WORK DESIGN AND SCHEDULING FOR DIALYSIS CLINICS

Vince Slaugh, Cornell University

Joint work with Andre A. Cire
(Rotman School of Management)

Rotman School of Management UNIVERSITY OF TORONTO

Overview

"[This is] an ICU-type procedure, that would ideally be conducted in an inpatient sterile setting, being done outpatient with providers who often have much less training and expertise."

Parker et al (2024) in I American Journal of Kidney Disease

1. Characterizing dialysis clinic challenges

- Scheduling challenges
- Economic/societal importance
- Connections to other operations

2. Work design and scheduling analysis

- "Push" vs "Interlaced" vs "Tandem"
- Optimality structure and time trade-offs
- Strategic decisions for clinic operations

Dialysis as an Operations

Put-on 25 min $(15$ min shitt	Treatment Duration prescribed by doctor, usually 3-4 hours (MWF or TTS) Negligible laborrequirement	Take-Off 20 min

Labor Considerations

- Personal care technicians (PCTs) care for up to 4 patients simultaneously
- A typical shift is $4 \mathrm{AM}-7 \mathrm{PM}, 3$ times per week
- Frustrations from "conflicts" in schedules leads to stress and turnover
- Registered nurses (RNs) support up to 12 stations at once

Facility Considerations

- Usually have $12 / 16 / 20 / 24$ stations, grouped into "pods" of 4 stations
- Each day has three "shifts" of patients
- Patients belong to MWF group or TTS cohorts
- Early morning treatment times are prized
- Waiting is very costly

A Dialysis Clinic: Pods of 4 stations

Clinics usually have 12, 16, 20, or 24 chairs

Dialysis Clinic Size Distribution
\# of Dialysis Stations

CMS reports that there are
 7,581 dialysis facilities comprising 133,195 stations

Clinics sometimes have an extra chair with additional infection control protocols

Kidney Dialysis: 6\% of Medicare Spending

Davita

News \& Events
NEWS RELEASES EVENTS 2021 CAPI ${ }^{-}$

Volume: Total U.S. dialysis treatments for the second quarter of 2023 were $7,231,242$, or an average of 92,708 treatments per d compared to the first quarter of 2023. Normalized non-acquired treatment growth in the second quarter of 2023 compared to 1

	Three months ended				Quarter change		Six months ended				Year to date change	
	June 30, 2023		$\begin{gathered} \text { March 31, } \\ 2023 \end{gathered}$				June 30, 2023		June 30, 2022			
	(dollars in millions, except per treatment data)											
Revenue per treatment	\$	376.73	\$	366.14	\$	10.59	\$	371.48	\$	363.47	\$	8.01
Patient care costs per treatment	\$	252.57	\$	257.34	\$	(4.77)	\$	254.94	\$	249.85	\$	5.09
General and administrative	\$	279	\$	259	\$	20	\$	538	\$	458	\$	80

Related Literature

- Mathematical Programming Approaches to Dialysis Clinic Scheduling
- Farhadi et al (2023)
- Reihaneh et al (2023)
- Nwaneri et al (2021)
- Fleming et al (2020)

- Other Research on Dialysis Clinics

- Webb and Wish (2024) on care technician staffing ratios
- Bozkir et al (2023) on patient cohorting during the pandemic
- Related Topics
- Li and Slaugh (2024) on resource turnaround operations, such as hotel housekeeping
- Allahverdi et al (2008), a survey of scheduling problems with setup times

What are our goals?

Minimizing Labor Costs

Various ways to define...
Day Length

- Reducing the facility end time

Labor Efficiency: Direct Patient Care (DPC) Hours Ratio

- Reducing total labor hours, including PCTs and RNs

Skills-Mix Weighted Costs

- Weighting labor costs by hourly wage differences

Healthcare \& Pharmaceuticals
Fresenius Medical shares at 12-year
low as labour costs weigh on profit

Work Design

Without increasing DPC, improve the job by..

Reducing Stress

- Facility administrators manually build infeasible schedules(!) with conflicts for put-ons and takeoffs
- Allow sufficient time: 25/20 minutes for put-ons and take-offs vs. only 15 minutes

Reducing Switchovers

- Work in tandem to specialize in put-ons or takeoffs to avoid switching between complex tasks

Facilitating High-Value Care

- Schedule stability allows caregivers to invest in secondary care tasks

Clinic Operations: The Current Challenge

| Legend: $\quad \square$ Connection Time $\quad \square$ Treatment Time $\quad \square$ Turnover Time $\quad \bigcirc$ Treatments Ending at Same Time |
| :--- | :--- | :--- | :--- | :--- |

The PUSH system

PUSH (aka "stacked"): Schedule patients to begin put-ons as early as possible

- Patients tend to prefer earlier treatment times
- Nice and tidy: no overlap between $1^{\text {st }}, 2^{\text {nd }}$, and $3^{\text {rd }}$ shifts of patients
- Investigated dozens of facilities' schedules, and all had the hallmark "peaks-and-valleys" graph for the number of patients in treatment over time \rightarrow this strategy is standard

Simplified push model with 20-minute put-on, 20-minute take-off, and 3:20 treatment duration

This should be optimal, right??

Last take-off ends at 7:40 PM

No!

- Intuition: The MOD Pizza's Oven Bottleneck Problem (9)

No!

- Intuition: The MOD Pizza's Oven Bottleneck Problem $\because \frac{\square}{0}$

What is the optimal strategy?

- The Interlaced strategy: leave gaps between patient put-ons

This is an interlaced strategy because we are interlacing patients from $1^{\text {st }}$ shift with $2^{\text {nd }}$ shift and $2^{\text {nd }}$ shift with $3^{\text {rd }}$ shift

Benefit of Rotary Systems

General Structure

Put-on \dot{D}	Treatment	Take-Off
\ddot{D}		
$-\dot{D}$		
\boldsymbol{O}		

Proposition 1. Consider a pod with C chairs and one technician, and suppose that $D>(C-1) \cdot \dot{D}$. The completion time of the n-th patient in the push system is

$$
\begin{equation*}
Z^{P}(n):=\underbrace{n \cdot \dot{D}}+\left(\left\lfloor\frac{n-1}{C}\right\rfloor+1\right) \cdot(D+\ddot{D}) . \tag{7}
\end{equation*}
$$

Key insight: grows linearly with the number of patients \boldsymbol{n} and put-on times

Characterizing the INTERLACED system

-What happens to the interlaced system?

Proposition 2. Consider a pod with C chairs and one technician, and suppose that $D>(C-1) \cdot \dot{D}$. The completion time of the n-th patient in the interlaced system is

$$
\begin{equation*}
Z^{I}(n):=\left(\left\lfloor\frac{n-1}{C}\right\rfloor+1\right)(\dot{D}+D+\ddot{D})+((n-1) \quad \bmod C)(\dot{D}+\ddot{D}) \tag{11}
\end{equation*}
$$

> Key insight: removes that linear term as patients do not need to wait until a chair is available

Proposition 3. The makespan of an interlaced system is shorter than the makespan of a push system by

$$
\left((C-1)\left\lfloor\frac{n-1}{C}\right\rfloor\right) \cdot \dot{D}-((n-1) \bmod C) \cdot \ddot{D}
$$

Interlacing is optimal for solo PCT pods

Proposition 4. The interlaced system minimizes the makespan for $n \geq C+1$.

With 25 -min put-ons, 20-min take-offs, and 3.5 -hour treatments for 12 patients, the interlaced strategy ends the PCT shift 1.5 hours earlier!

TANDEM System: What if 2 PCTS work together?

Combine 2 pods so that 2 PCTs serve 8 stations. What could be the benefit?

The Tandem system improves labor efficiency

With specialized roles, the take-off specialist PCT can come in later, and the put-on specialist PCT can leave earlier.

Labor Hours per Patient Completion
——2xInterlaced -Tandem

A strategic view of operating a 16-chair clinic

When there are fewer than 36 patients, operate one tandem and one interlaced pod

Lessons Learned

1. Process modeling for optimization can uncover firefighting and workarounds.
2. Human utilization differs from machine utilization, and sometimes the optimal policy can be counter-intuitive when humans and machines interact.
3. It pays off to think carefully about work design and consider new models for how work can be performed.

Thank you!

Vince Slaugh
vslaugh@cornell.edu

