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Background: Public Impact Analytics Science Lab (PIAS Lab) at Harvard

Devotion: advancing and applying the science of analytics for solving
societal problems that can have public impact.

Mission: improving societal outcomes by developing and integrating tools
in Operations Research, Machine Learning and Big Data, Decision
Making, Statistics, Artificial Intelligence (AI), and related fields.

Focus: various aspects of the healthcare sector.
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Problem: AI and ML tools are not as impactful as they can be in the medical
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Question: How can we enhance AI and ML so they become impactful in
practice?
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Healthcare Sector Will Devote 10.5% of
Spending to AI

BY PYMNTS
SEPTEMBER 5, 2023

   

  

The healthcare sector is projected to nearly double its spending on artificial intelligence (AI).

A recent report by Morgan Stanley says that the amount allocated to AI and machine learning (ML) in
health company budgets is anticipated to be 10.5% next year, compared to 5.5% in 2022. The
investment bank says that 94% of healthcare companies are using AI and/or ML in some capacity.

“But while the use of AI/ML is proliferating across the industry, it has yet to reach its full potential as a
driver of new business opportunities and efficiencies,” says the report, noted Monday (Sept. 4) by
Seeking Alpha.

“Specifically, investors should look for AI/ML to create significant opportunities in four areas,” the
report said: biopharma, health care services and technology, life sciences tools and diagnostics, andPrivacy  - Terms
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Major Issues (Observations)

1 Algorithm Aversion: Physicians do not put enough weight on the advice
from algorithms.

2 Human Aversion: Recommendations from algorithms do not match
physicians’ intuition.

3 Causation Aversion: Algorithms are based on associations between
variables (risk prediction) and lack causal reasoning. Physicians need help
with complex causal reasoning, especial because of inevitable ambiguity.
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Solution 1: A Centaur Model of AI/ML

The world’s first championship of centaur style chess organized by
Kasparov (1998).

Kasparov: Human paired with algorithms can do better than just the best
algorithms.

“Weak human plus machine plus better process was superior to a strong
computer alone and, more remarkably, superior to a strong human plus
machine plus inferior process.”

Our findings (experiments at the Mayo Clinic):

1 Centaurs >> both best human experts and strongest algorithms.

2 Centaurs address both algorithm aversion and human aversion.
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Solution 2: AI/ML for Causal Reasoning under Ambiguity

Algorithms have focused on the

1 Association level

Ladder of Causation (Judea Pearl)

2 Probabilistic views ⇒ Ignore the fact that physicians:

Have to deal with ambiguity (Knightian uncertainty)

Have different ambiguity attitudes
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Observational Data

Physicians's Preferences

Reinforcement Learning Alg.
Causal Reasoning under Ambiguity

Personalized Dynamic Treatment 
Regime (for each patient and physician)

Our findings (experiments at the Mayo Clinic):

1 Generates superior treatment regimes: yield causal improvements.

2 Allows for two-way personalization: personalization based on both patient
and physician characteristics.
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STUDY DESIGN

I. Data
• A retrospective dataset from the Mayo Clinic was collected.

• Data included large sample of patients with liver, kidney, or heart transplantation.

2. Machine
Learning

• Developed and validated a machine learning model that predicts readmission across all 
solid organ transplant patients.

• Derived actionable clinical insights per organ.

3. Online
Survey

• Designed an online survey tool to compare the assessment of human experts versus the
machine learning model.

• Tailored to gather individual feedback on the accuracy, clinical drivers of risk, and
operational impact of the readmission score.
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Observation: main suggested change after “nothing:” better glucose
management.
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solid organ transplantation (kidney, liver, heart)
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Significant Concern: New-Onset Diabetes After Transplantation (NODAT)

NODAT: Incidence of diabetes in patients with no history of diabetes prior to
transplantation.
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Figure: The left (right) vertical dotted line: the threshold for prediabetes (diabetes) as
defined by American Diabetes Association (2012).
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Incidence, Risk Factors, and Trends for Postheart
Transplantation Diabetes Mellitus

Vidit N. Munshi, MAa,*, Soroush Saghafian, PhDb, Curtiss B. Cook, MDc, D. Eric Steidley, MDc,
Brian Hardaway, MDc, and Harini A. Chakkera, MD, MPHc

This retrospective study analyzed glycemic trends, incidence of post-transplant diabetes
mellitus (PTDM) incidence and associated risk factors in a cohort of patients who under-
went first-time heart transplantation (HT). Univariate analyses compared patient with
and without pretransplant diabetes mellitus (DM). Multivariate regression analyses were
conducted to determine association between PTDM and different risk factors. Finally,
trends in glucometrics and other outcomes are described across follow-up time points.
There were 152 patients who underwent HT between 2010 and 2015, 109 of whom had no
pretransplant history of DM. PTDM incidence was 38% by the 1-year follow-up. Pretrans-
plant body mass index (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.01 to 1.23,
p = 0.03), insulin use during the final 24 hours of inpatient stay (OR 4.26, 95% CI 1.72 to
10.56, p <0.01), mean inpatient glucose (OR 2.21, 95% CI 1.33 to 3.69, p <0.01), and mean
glucose in the final 24 hours before discharge (OR 1.29, 95% CI 1.03 to 1.60, p = 0.03)
were associated with increased odds of PTDM at 1 year. In patients on insulin before dis-
charge, blood glucose values were significantly higher compared with those who were not
(136 mg/dl vs 114 mg/dl at 1 to 3 months, 112 vs 100 at 4 to 6 months, 109 vs 98 at 8 to
12 months, all p <0.01). This analysis improves understanding of PTDM incidence, gluco-
metric trends, and risk differences by DM status in the HT population. Similar to liver
and kidney patients, inpatient glucometrics may be informative of PTDM risk in HT
patients. Guidelines for this population should be developed to account for risk heteroge-
neity and need for differential management. © 2019 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;125:436−440)

Post-transplantation diabetes mellitus (PTDM) is a com-
mon complication of solid organ transplantation affecting
patients without a previous history of DM, leading to
increased risk of graft failure, decreased survival, and other
co-morbidities.1,2 Although the risk of PTDM exists with
all organ transplants, most of the literature on this disease
focuses on kidney and liver transplant recipients, which
make up most of all solid organ transplantations.3,4 PTDM
features and the types of feasible management strategies
may differ between transplanted organs. The number of
HTs has been increasing in recent years and optimizing
long-term outcomes in this group is an important goal.5 To
this end, there is limited data on the frequency and risk fac-
tors associated with PTDM in the HT population. In this
study, we utilize a dataset from a single HT center to assess
changes in glycemic control and determine risk factors in
development of PTDM.

Methods

This was a retrospective study of a dataset consisting of
152 patients compiled through a de-identified chart review
with Institutional Research Board approval. The patients
underwent first time heart-only transplant between 2010
and 2015. Information collected on each patient included
demographic data and medical history, as well as Hemoglo-
bin A1c (HbA1c), fasting blood glucose (FBG), uric acid,
and cholesterols at 1-, 2-, 3-, 4-, 6-, 8-, and 12-months post-
transplant. In addition, we obtained pretransplant DM status
and medication information, as well as immunosuppressant
blood trough levels at 8- and 12-months post-transplant.

The immunosuppression protocol consists of intravenous
methylprednisolone 125 mg preoperative and 500 mg intra-
operatively, and then gradual glucocorticoid tapering over
the first 120 postoperative days. Thymoglobulin is also
infused intraoperatively and on postoperative days 1 to 3.
Mycophenolate mofetil is initiated immediately after trans-
plantation whereas tacrolimus is initiated after completion
of thymoglobulin therapy.

We classified patients with PTDM using the updated
2014 International Consensus Guidelines criteria of a FBG
level >126 mg/dl or HbA1c >6.5%.6 In contrast to kidney
and liver patients from the same institution who are fol-
lowed up at prescheduled intervals,7−9 heart transplant
patients were followed up at different frequent time inter-
vals, making collection of outpatient glucose data at spe-
cific time points difficult. Therefore, to compare glucose
values over time, we grouped follow-up visits into 3 time
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Abstract

Background

Hyperglycemia following solid organ transplant is common among patients without pre-

existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple

times, which if continued, causes new-onset diabetes after transplantation (NODAT).

Objective

To study if the first and recurrent incidence of hyperglycemia are affected differently by immu-

nosuppressive regimens, demographic and medical-related risk factors, and inpatient hyper-

glycemic conditions (i.e., an emphasis on the time course of post-transplant complications).

Methods

We conducted a retrospective analysis of 407 patients who underwent kidney transplanta-

tion at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior

to transplant. For this category of patients, we evaluated the impact of (1) immunosuppres-

sive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related

risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence

of hyperglycemia in one year post-transplant. We employed two versions of Cox regression

analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and

(2) a time-independent model to analyze the first incidence of hyperglycemia.

Results

Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus

(P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia,

while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P =

0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for

the recurrent cases of hyperglycemia.
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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.
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1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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Background

Most prior studies characterizing post-transplantation diabetes mellitus (PTDM) have been

limited to single-cohort, single-organ studies. This retrospective study determined PTDM

across organs by comparing incidence and risk factors among 346 liver and 407 kidney

transplant recipients from a single center.

Methods

Univariate and multivariate regression-based analyses were conducted to determine asso-

ciation of various risk factors and PTDM in the two cohorts, as well as differences in gluco-

metrics and insulin use across time points.

Results

There was a higher incidence of PTDM among liver versus kidney transplant recipients

(30% vs. 19%) at 1-year post-transplant. Liver transplant recipients demonstrated a 337%

higher odds association to PTDM (OR 3.37, 95% CI (1.38–8.25), p<0.01). 1-month FBG

was higher in kidney patients (135 mg/dL vs 104 mg/dL; p < .01), while 1-month insulin use

was higher in liver patients (61% vs 27%, p < .01). Age, BMI, insulin use, and inpatient FBG

were also significantly associated with differential PTDM risk.

Conclusions

Kidney and liver transplant patients have different PTDM risk profiles, both in terms of abso-

lute PTDM risk as well as time course of risk. Management of this population should better

reflect risk heterogeneity to short-term need for insulin therapy and potentially long-term

outcomes.
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This retrospective study analyzed glycemic trends, incidence of post-transplant diabetes
mellitus (PTDM) incidence and associated risk factors in a cohort of patients who under-
went first-time heart transplantation (HT). Univariate analyses compared patient with
and without pretransplant diabetes mellitus (DM). Multivariate regression analyses were
conducted to determine association between PTDM and different risk factors. Finally,
trends in glucometrics and other outcomes are described across follow-up time points.
There were 152 patients who underwent HT between 2010 and 2015, 109 of whom had no
pretransplant history of DM. PTDM incidence was 38% by the 1-year follow-up. Pretrans-
plant body mass index (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.01 to 1.23,
p = 0.03), insulin use during the final 24 hours of inpatient stay (OR 4.26, 95% CI 1.72 to
10.56, p <0.01), mean inpatient glucose (OR 2.21, 95% CI 1.33 to 3.69, p <0.01), and mean
glucose in the final 24 hours before discharge (OR 1.29, 95% CI 1.03 to 1.60, p = 0.03)
were associated with increased odds of PTDM at 1 year. In patients on insulin before dis-
charge, blood glucose values were significantly higher compared with those who were not
(136 mg/dl vs 114 mg/dl at 1 to 3 months, 112 vs 100 at 4 to 6 months, 109 vs 98 at 8 to
12 months, all p <0.01). This analysis improves understanding of PTDM incidence, gluco-
metric trends, and risk differences by DM status in the HT population. Similar to liver
and kidney patients, inpatient glucometrics may be informative of PTDM risk in HT
patients. Guidelines for this population should be developed to account for risk heteroge-
neity and need for differential management. © 2019 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;125:436−440)

Post-transplantation diabetes mellitus (PTDM) is a com-
mon complication of solid organ transplantation affecting
patients without a previous history of DM, leading to
increased risk of graft failure, decreased survival, and other
co-morbidities.1,2 Although the risk of PTDM exists with
all organ transplants, most of the literature on this disease
focuses on kidney and liver transplant recipients, which
make up most of all solid organ transplantations.3,4 PTDM
features and the types of feasible management strategies
may differ between transplanted organs. The number of
HTs has been increasing in recent years and optimizing
long-term outcomes in this group is an important goal.5 To
this end, there is limited data on the frequency and risk fac-
tors associated with PTDM in the HT population. In this
study, we utilize a dataset from a single HT center to assess
changes in glycemic control and determine risk factors in
development of PTDM.

Methods

This was a retrospective study of a dataset consisting of
152 patients compiled through a de-identified chart review
with Institutional Research Board approval. The patients
underwent first time heart-only transplant between 2010
and 2015. Information collected on each patient included
demographic data and medical history, as well as Hemoglo-
bin A1c (HbA1c), fasting blood glucose (FBG), uric acid,
and cholesterols at 1-, 2-, 3-, 4-, 6-, 8-, and 12-months post-
transplant. In addition, we obtained pretransplant DM status
and medication information, as well as immunosuppressant
blood trough levels at 8- and 12-months post-transplant.

The immunosuppression protocol consists of intravenous
methylprednisolone 125 mg preoperative and 500 mg intra-
operatively, and then gradual glucocorticoid tapering over
the first 120 postoperative days. Thymoglobulin is also
infused intraoperatively and on postoperative days 1 to 3.
Mycophenolate mofetil is initiated immediately after trans-
plantation whereas tacrolimus is initiated after completion
of thymoglobulin therapy.

We classified patients with PTDM using the updated
2014 International Consensus Guidelines criteria of a FBG
level >126 mg/dl or HbA1c >6.5%.6 In contrast to kidney
and liver patients from the same institution who are fol-
lowed up at prescheduled intervals,7−9 heart transplant
patients were followed up at different frequent time inter-
vals, making collection of outpatient glucose data at spe-
cific time points difficult. Therefore, to compare glucose
values over time, we grouped follow-up visits into 3 time
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Abstract

Background

Hyperglycemia following solid organ transplant is common among patients without pre-

existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple

times, which if continued, causes new-onset diabetes after transplantation (NODAT).

Objective

To study if the first and recurrent incidence of hyperglycemia are affected differently by immu-

nosuppressive regimens, demographic and medical-related risk factors, and inpatient hyper-

glycemic conditions (i.e., an emphasis on the time course of post-transplant complications).

Methods

We conducted a retrospective analysis of 407 patients who underwent kidney transplanta-

tion at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior

to transplant. For this category of patients, we evaluated the impact of (1) immunosuppres-

sive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related

risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence

of hyperglycemia in one year post-transplant. We employed two versions of Cox regression

analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and

(2) a time-independent model to analyze the first incidence of hyperglycemia.

Results

Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus

(P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia,

while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P =

0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for

the recurrent cases of hyperglycemia.
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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.
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1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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across organs by comparing incidence and risk factors among 346 liver and 407 kidney

transplant recipients from a single center.

Methods

Univariate and multivariate regression-based analyses were conducted to determine asso-

ciation of various risk factors and PTDM in the two cohorts, as well as differences in gluco-

metrics and insulin use across time points.

Results

There was a higher incidence of PTDM among liver versus kidney transplant recipients

(30% vs. 19%) at 1-year post-transplant. Liver transplant recipients demonstrated a 337%

higher odds association to PTDM (OR 3.37, 95% CI (1.38–8.25), p<0.01). 1-month FBG

was higher in kidney patients (135 mg/dL vs 104 mg/dL; p < .01), while 1-month insulin use

was higher in liver patients (61% vs 27%, p < .01). Age, BMI, insulin use, and inpatient FBG

were also significantly associated with differential PTDM risk.

Conclusions

Kidney and liver transplant patients have different PTDM risk profiles, both in terms of abso-

lute PTDM risk as well as time course of risk. Management of this population should better

reflect risk heterogeneity to short-term need for insulin therapy and potentially long-term

outcomes.
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This retrospective study analyzed glycemic trends, incidence of post-transplant diabetes
mellitus (PTDM) incidence and associated risk factors in a cohort of patients who under-
went first-time heart transplantation (HT). Univariate analyses compared patient with
and without pretransplant diabetes mellitus (DM). Multivariate regression analyses were
conducted to determine association between PTDM and different risk factors. Finally,
trends in glucometrics and other outcomes are described across follow-up time points.
There were 152 patients who underwent HT between 2010 and 2015, 109 of whom had no
pretransplant history of DM. PTDM incidence was 38% by the 1-year follow-up. Pretrans-
plant body mass index (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.01 to 1.23,
p = 0.03), insulin use during the final 24 hours of inpatient stay (OR 4.26, 95% CI 1.72 to
10.56, p <0.01), mean inpatient glucose (OR 2.21, 95% CI 1.33 to 3.69, p <0.01), and mean
glucose in the final 24 hours before discharge (OR 1.29, 95% CI 1.03 to 1.60, p = 0.03)
were associated with increased odds of PTDM at 1 year. In patients on insulin before dis-
charge, blood glucose values were significantly higher compared with those who were not
(136 mg/dl vs 114 mg/dl at 1 to 3 months, 112 vs 100 at 4 to 6 months, 109 vs 98 at 8 to
12 months, all p <0.01). This analysis improves understanding of PTDM incidence, gluco-
metric trends, and risk differences by DM status in the HT population. Similar to liver
and kidney patients, inpatient glucometrics may be informative of PTDM risk in HT
patients. Guidelines for this population should be developed to account for risk heteroge-
neity and need for differential management. © 2019 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;125:436−440)

Post-transplantation diabetes mellitus (PTDM) is a com-
mon complication of solid organ transplantation affecting
patients without a previous history of DM, leading to
increased risk of graft failure, decreased survival, and other
co-morbidities.1,2 Although the risk of PTDM exists with
all organ transplants, most of the literature on this disease
focuses on kidney and liver transplant recipients, which
make up most of all solid organ transplantations.3,4 PTDM
features and the types of feasible management strategies
may differ between transplanted organs. The number of
HTs has been increasing in recent years and optimizing
long-term outcomes in this group is an important goal.5 To
this end, there is limited data on the frequency and risk fac-
tors associated with PTDM in the HT population. In this
study, we utilize a dataset from a single HT center to assess
changes in glycemic control and determine risk factors in
development of PTDM.

Methods

This was a retrospective study of a dataset consisting of
152 patients compiled through a de-identified chart review
with Institutional Research Board approval. The patients
underwent first time heart-only transplant between 2010
and 2015. Information collected on each patient included
demographic data and medical history, as well as Hemoglo-
bin A1c (HbA1c), fasting blood glucose (FBG), uric acid,
and cholesterols at 1-, 2-, 3-, 4-, 6-, 8-, and 12-months post-
transplant. In addition, we obtained pretransplant DM status
and medication information, as well as immunosuppressant
blood trough levels at 8- and 12-months post-transplant.

The immunosuppression protocol consists of intravenous
methylprednisolone 125 mg preoperative and 500 mg intra-
operatively, and then gradual glucocorticoid tapering over
the first 120 postoperative days. Thymoglobulin is also
infused intraoperatively and on postoperative days 1 to 3.
Mycophenolate mofetil is initiated immediately after trans-
plantation whereas tacrolimus is initiated after completion
of thymoglobulin therapy.

We classified patients with PTDM using the updated
2014 International Consensus Guidelines criteria of a FBG
level >126 mg/dl or HbA1c >6.5%.6 In contrast to kidney
and liver patients from the same institution who are fol-
lowed up at prescheduled intervals,7−9 heart transplant
patients were followed up at different frequent time inter-
vals, making collection of outpatient glucose data at spe-
cific time points difficult. Therefore, to compare glucose
values over time, we grouped follow-up visits into 3 time
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Abstract

Background

Hyperglycemia following solid organ transplant is common among patients without pre-

existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple

times, which if continued, causes new-onset diabetes after transplantation (NODAT).

Objective

To study if the first and recurrent incidence of hyperglycemia are affected differently by immu-

nosuppressive regimens, demographic and medical-related risk factors, and inpatient hyper-

glycemic conditions (i.e., an emphasis on the time course of post-transplant complications).

Methods

We conducted a retrospective analysis of 407 patients who underwent kidney transplanta-

tion at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior

to transplant. For this category of patients, we evaluated the impact of (1) immunosuppres-

sive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related

risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence

of hyperglycemia in one year post-transplant. We employed two versions of Cox regression

analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and

(2) a time-independent model to analyze the first incidence of hyperglycemia.

Results

Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus

(P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia,

while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P =

0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for

the recurrent cases of hyperglycemia.
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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.

Funding: This work was partially supported by the National Science Foundation [Award CMMI-
1562645].
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1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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Abstract

Background

Most prior studies characterizing post-transplantation diabetes mellitus (PTDM) have been

limited to single-cohort, single-organ studies. This retrospective study determined PTDM

across organs by comparing incidence and risk factors among 346 liver and 407 kidney

transplant recipients from a single center.

Methods

Univariate and multivariate regression-based analyses were conducted to determine asso-

ciation of various risk factors and PTDM in the two cohorts, as well as differences in gluco-

metrics and insulin use across time points.

Results

There was a higher incidence of PTDM among liver versus kidney transplant recipients

(30% vs. 19%) at 1-year post-transplant. Liver transplant recipients demonstrated a 337%

higher odds association to PTDM (OR 3.37, 95% CI (1.38–8.25), p<0.01). 1-month FBG

was higher in kidney patients (135 mg/dL vs 104 mg/dL; p < .01), while 1-month insulin use

was higher in liver patients (61% vs 27%, p < .01). Age, BMI, insulin use, and inpatient FBG

were also significantly associated with differential PTDM risk.

Conclusions

Kidney and liver transplant patients have different PTDM risk profiles, both in terms of abso-

lute PTDM risk as well as time course of risk. Management of this population should better

reflect risk heterogeneity to short-term need for insulin therapy and potentially long-term

outcomes.
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Incidence, Risk Factors, and Trends for Postheart
Transplantation Diabetes Mellitus

Vidit N. Munshi, MAa,*, Soroush Saghafian, PhDb, Curtiss B. Cook, MDc, D. Eric Steidley, MDc,
Brian Hardaway, MDc, and Harini A. Chakkera, MD, MPHc

This retrospective study analyzed glycemic trends, incidence of post-transplant diabetes
mellitus (PTDM) incidence and associated risk factors in a cohort of patients who under-
went first-time heart transplantation (HT). Univariate analyses compared patient with
and without pretransplant diabetes mellitus (DM). Multivariate regression analyses were
conducted to determine association between PTDM and different risk factors. Finally,
trends in glucometrics and other outcomes are described across follow-up time points.
There were 152 patients who underwent HT between 2010 and 2015, 109 of whom had no
pretransplant history of DM. PTDM incidence was 38% by the 1-year follow-up. Pretrans-
plant body mass index (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.01 to 1.23,
p = 0.03), insulin use during the final 24 hours of inpatient stay (OR 4.26, 95% CI 1.72 to
10.56, p <0.01), mean inpatient glucose (OR 2.21, 95% CI 1.33 to 3.69, p <0.01), and mean
glucose in the final 24 hours before discharge (OR 1.29, 95% CI 1.03 to 1.60, p = 0.03)
were associated with increased odds of PTDM at 1 year. In patients on insulin before dis-
charge, blood glucose values were significantly higher compared with those who were not
(136 mg/dl vs 114 mg/dl at 1 to 3 months, 112 vs 100 at 4 to 6 months, 109 vs 98 at 8 to
12 months, all p <0.01). This analysis improves understanding of PTDM incidence, gluco-
metric trends, and risk differences by DM status in the HT population. Similar to liver
and kidney patients, inpatient glucometrics may be informative of PTDM risk in HT
patients. Guidelines for this population should be developed to account for risk heteroge-
neity and need for differential management. © 2019 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;125:436−440)

Post-transplantation diabetes mellitus (PTDM) is a com-
mon complication of solid organ transplantation affecting
patients without a previous history of DM, leading to
increased risk of graft failure, decreased survival, and other
co-morbidities.1,2 Although the risk of PTDM exists with
all organ transplants, most of the literature on this disease
focuses on kidney and liver transplant recipients, which
make up most of all solid organ transplantations.3,4 PTDM
features and the types of feasible management strategies
may differ between transplanted organs. The number of
HTs has been increasing in recent years and optimizing
long-term outcomes in this group is an important goal.5 To
this end, there is limited data on the frequency and risk fac-
tors associated with PTDM in the HT population. In this
study, we utilize a dataset from a single HT center to assess
changes in glycemic control and determine risk factors in
development of PTDM.

Methods

This was a retrospective study of a dataset consisting of
152 patients compiled through a de-identified chart review
with Institutional Research Board approval. The patients
underwent first time heart-only transplant between 2010
and 2015. Information collected on each patient included
demographic data and medical history, as well as Hemoglo-
bin A1c (HbA1c), fasting blood glucose (FBG), uric acid,
and cholesterols at 1-, 2-, 3-, 4-, 6-, 8-, and 12-months post-
transplant. In addition, we obtained pretransplant DM status
and medication information, as well as immunosuppressant
blood trough levels at 8- and 12-months post-transplant.

The immunosuppression protocol consists of intravenous
methylprednisolone 125 mg preoperative and 500 mg intra-
operatively, and then gradual glucocorticoid tapering over
the first 120 postoperative days. Thymoglobulin is also
infused intraoperatively and on postoperative days 1 to 3.
Mycophenolate mofetil is initiated immediately after trans-
plantation whereas tacrolimus is initiated after completion
of thymoglobulin therapy.

We classified patients with PTDM using the updated
2014 International Consensus Guidelines criteria of a FBG
level >126 mg/dl or HbA1c >6.5%.6 In contrast to kidney
and liver patients from the same institution who are fol-
lowed up at prescheduled intervals,7−9 heart transplant
patients were followed up at different frequent time inter-
vals, making collection of outpatient glucose data at spe-
cific time points difficult. Therefore, to compare glucose
values over time, we grouped follow-up visits into 3 time
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Abstract

Background

Hyperglycemia following solid organ transplant is common among patients without pre-

existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple

times, which if continued, causes new-onset diabetes after transplantation (NODAT).

Objective

To study if the first and recurrent incidence of hyperglycemia are affected differently by immu-

nosuppressive regimens, demographic and medical-related risk factors, and inpatient hyper-

glycemic conditions (i.e., an emphasis on the time course of post-transplant complications).

Methods

We conducted a retrospective analysis of 407 patients who underwent kidney transplanta-

tion at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior

to transplant. For this category of patients, we evaluated the impact of (1) immunosuppres-

sive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related

risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence

of hyperglycemia in one year post-transplant. We employed two versions of Cox regression

analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and

(2) a time-independent model to analyze the first incidence of hyperglycemia.

Results

Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus

(P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia,

while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P =

0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for

the recurrent cases of hyperglycemia.
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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.

Funding: This work was partially supported by the National Science Foundation [Award CMMI-
1562645].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2019.0797.

Keywords: ambiguous POMDP • cloud of models • conservatism level • kidney transplant • immunosuppressive drug • diabetes

1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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limited to single-cohort, single-organ studies. This retrospective study determined PTDM

across organs by comparing incidence and risk factors among 346 liver and 407 kidney

transplant recipients from a single center.

Methods

Univariate and multivariate regression-based analyses were conducted to determine asso-

ciation of various risk factors and PTDM in the two cohorts, as well as differences in gluco-

metrics and insulin use across time points.

Results

There was a higher incidence of PTDM among liver versus kidney transplant recipients

(30% vs. 19%) at 1-year post-transplant. Liver transplant recipients demonstrated a 337%

higher odds association to PTDM (OR 3.37, 95% CI (1.38–8.25), p<0.01). 1-month FBG

was higher in kidney patients (135 mg/dL vs 104 mg/dL; p < .01), while 1-month insulin use

was higher in liver patients (61% vs 27%, p < .01). Age, BMI, insulin use, and inpatient FBG

were also significantly associated with differential PTDM risk.

Conclusions

Kidney and liver transplant patients have different PTDM risk profiles, both in terms of abso-

lute PTDM risk as well as time course of risk. Management of this population should better

reflect risk heterogeneity to short-term need for insulin therapy and potentially long-term

outcomes.
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This retrospective study analyzed glycemic trends, incidence of post-transplant diabetes
mellitus (PTDM) incidence and associated risk factors in a cohort of patients who under-
went first-time heart transplantation (HT). Univariate analyses compared patient with
and without pretransplant diabetes mellitus (DM). Multivariate regression analyses were
conducted to determine association between PTDM and different risk factors. Finally,
trends in glucometrics and other outcomes are described across follow-up time points.
There were 152 patients who underwent HT between 2010 and 2015, 109 of whom had no
pretransplant history of DM. PTDM incidence was 38% by the 1-year follow-up. Pretrans-
plant body mass index (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.01 to 1.23,
p = 0.03), insulin use during the final 24 hours of inpatient stay (OR 4.26, 95% CI 1.72 to
10.56, p <0.01), mean inpatient glucose (OR 2.21, 95% CI 1.33 to 3.69, p <0.01), and mean
glucose in the final 24 hours before discharge (OR 1.29, 95% CI 1.03 to 1.60, p = 0.03)
were associated with increased odds of PTDM at 1 year. In patients on insulin before dis-
charge, blood glucose values were significantly higher compared with those who were not
(136 mg/dl vs 114 mg/dl at 1 to 3 months, 112 vs 100 at 4 to 6 months, 109 vs 98 at 8 to
12 months, all p <0.01). This analysis improves understanding of PTDM incidence, gluco-
metric trends, and risk differences by DM status in the HT population. Similar to liver
and kidney patients, inpatient glucometrics may be informative of PTDM risk in HT
patients. Guidelines for this population should be developed to account for risk heteroge-
neity and need for differential management. © 2019 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;125:436−440)

Post-transplantation diabetes mellitus (PTDM) is a com-
mon complication of solid organ transplantation affecting
patients without a previous history of DM, leading to
increased risk of graft failure, decreased survival, and other
co-morbidities.1,2 Although the risk of PTDM exists with
all organ transplants, most of the literature on this disease
focuses on kidney and liver transplant recipients, which
make up most of all solid organ transplantations.3,4 PTDM
features and the types of feasible management strategies
may differ between transplanted organs. The number of
HTs has been increasing in recent years and optimizing
long-term outcomes in this group is an important goal.5 To
this end, there is limited data on the frequency and risk fac-
tors associated with PTDM in the HT population. In this
study, we utilize a dataset from a single HT center to assess
changes in glycemic control and determine risk factors in
development of PTDM.

Methods

This was a retrospective study of a dataset consisting of
152 patients compiled through a de-identified chart review
with Institutional Research Board approval. The patients
underwent first time heart-only transplant between 2010
and 2015. Information collected on each patient included
demographic data and medical history, as well as Hemoglo-
bin A1c (HbA1c), fasting blood glucose (FBG), uric acid,
and cholesterols at 1-, 2-, 3-, 4-, 6-, 8-, and 12-months post-
transplant. In addition, we obtained pretransplant DM status
and medication information, as well as immunosuppressant
blood trough levels at 8- and 12-months post-transplant.

The immunosuppression protocol consists of intravenous
methylprednisolone 125 mg preoperative and 500 mg intra-
operatively, and then gradual glucocorticoid tapering over
the first 120 postoperative days. Thymoglobulin is also
infused intraoperatively and on postoperative days 1 to 3.
Mycophenolate mofetil is initiated immediately after trans-
plantation whereas tacrolimus is initiated after completion
of thymoglobulin therapy.

We classified patients with PTDM using the updated
2014 International Consensus Guidelines criteria of a FBG
level >126 mg/dl or HbA1c >6.5%.6 In contrast to kidney
and liver patients from the same institution who are fol-
lowed up at prescheduled intervals,7−9 heart transplant
patients were followed up at different frequent time inter-
vals, making collection of outpatient glucose data at spe-
cific time points difficult. Therefore, to compare glucose
values over time, we grouped follow-up visits into 3 time
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Abstract

Background

Hyperglycemia following solid organ transplant is common among patients without pre-

existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple

times, which if continued, causes new-onset diabetes after transplantation (NODAT).

Objective

To study if the first and recurrent incidence of hyperglycemia are affected differently by immu-

nosuppressive regimens, demographic and medical-related risk factors, and inpatient hyper-

glycemic conditions (i.e., an emphasis on the time course of post-transplant complications).

Methods

We conducted a retrospective analysis of 407 patients who underwent kidney transplanta-

tion at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior

to transplant. For this category of patients, we evaluated the impact of (1) immunosuppres-

sive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related

risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence

of hyperglycemia in one year post-transplant. We employed two versions of Cox regression

analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and

(2) a time-independent model to analyze the first incidence of hyperglycemia.

Results

Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus

(P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia,

while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P =

0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for

the recurrent cases of hyperglycemia.
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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.
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1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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limited to single-cohort, single-organ studies. This retrospective study determined PTDM

across organs by comparing incidence and risk factors among 346 liver and 407 kidney

transplant recipients from a single center.

Methods

Univariate and multivariate regression-based analyses were conducted to determine asso-

ciation of various risk factors and PTDM in the two cohorts, as well as differences in gluco-

metrics and insulin use across time points.

Results

There was a higher incidence of PTDM among liver versus kidney transplant recipients

(30% vs. 19%) at 1-year post-transplant. Liver transplant recipients demonstrated a 337%

higher odds association to PTDM (OR 3.37, 95% CI (1.38–8.25), p<0.01). 1-month FBG

was higher in kidney patients (135 mg/dL vs 104 mg/dL; p < .01), while 1-month insulin use

was higher in liver patients (61% vs 27%, p < .01). Age, BMI, insulin use, and inpatient FBG

were also significantly associated with differential PTDM risk.

Conclusions

Kidney and liver transplant patients have different PTDM risk profiles, both in terms of abso-

lute PTDM risk as well as time course of risk. Management of this population should better

reflect risk heterogeneity to short-term need for insulin therapy and potentially long-term

outcomes.
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This retrospective study analyzed glycemic trends, incidence of post-transplant diabetes
mellitus (PTDM) incidence and associated risk factors in a cohort of patients who under-
went first-time heart transplantation (HT). Univariate analyses compared patient with
and without pretransplant diabetes mellitus (DM). Multivariate regression analyses were
conducted to determine association between PTDM and different risk factors. Finally,
trends in glucometrics and other outcomes are described across follow-up time points.
There were 152 patients who underwent HT between 2010 and 2015, 109 of whom had no
pretransplant history of DM. PTDM incidence was 38% by the 1-year follow-up. Pretrans-
plant body mass index (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.01 to 1.23,
p = 0.03), insulin use during the final 24 hours of inpatient stay (OR 4.26, 95% CI 1.72 to
10.56, p <0.01), mean inpatient glucose (OR 2.21, 95% CI 1.33 to 3.69, p <0.01), and mean
glucose in the final 24 hours before discharge (OR 1.29, 95% CI 1.03 to 1.60, p = 0.03)
were associated with increased odds of PTDM at 1 year. In patients on insulin before dis-
charge, blood glucose values were significantly higher compared with those who were not
(136 mg/dl vs 114 mg/dl at 1 to 3 months, 112 vs 100 at 4 to 6 months, 109 vs 98 at 8 to
12 months, all p <0.01). This analysis improves understanding of PTDM incidence, gluco-
metric trends, and risk differences by DM status in the HT population. Similar to liver
and kidney patients, inpatient glucometrics may be informative of PTDM risk in HT
patients. Guidelines for this population should be developed to account for risk heteroge-
neity and need for differential management. © 2019 Elsevier Inc. All rights reserved.
(Am J Cardiol 2020;125:436−440)

Post-transplantation diabetes mellitus (PTDM) is a com-
mon complication of solid organ transplantation affecting
patients without a previous history of DM, leading to
increased risk of graft failure, decreased survival, and other
co-morbidities.1,2 Although the risk of PTDM exists with
all organ transplants, most of the literature on this disease
focuses on kidney and liver transplant recipients, which
make up most of all solid organ transplantations.3,4 PTDM
features and the types of feasible management strategies
may differ between transplanted organs. The number of
HTs has been increasing in recent years and optimizing
long-term outcomes in this group is an important goal.5 To
this end, there is limited data on the frequency and risk fac-
tors associated with PTDM in the HT population. In this
study, we utilize a dataset from a single HT center to assess
changes in glycemic control and determine risk factors in
development of PTDM.

Methods

This was a retrospective study of a dataset consisting of
152 patients compiled through a de-identified chart review
with Institutional Research Board approval. The patients
underwent first time heart-only transplant between 2010
and 2015. Information collected on each patient included
demographic data and medical history, as well as Hemoglo-
bin A1c (HbA1c), fasting blood glucose (FBG), uric acid,
and cholesterols at 1-, 2-, 3-, 4-, 6-, 8-, and 12-months post-
transplant. In addition, we obtained pretransplant DM status
and medication information, as well as immunosuppressant
blood trough levels at 8- and 12-months post-transplant.

The immunosuppression protocol consists of intravenous
methylprednisolone 125 mg preoperative and 500 mg intra-
operatively, and then gradual glucocorticoid tapering over
the first 120 postoperative days. Thymoglobulin is also
infused intraoperatively and on postoperative days 1 to 3.
Mycophenolate mofetil is initiated immediately after trans-
plantation whereas tacrolimus is initiated after completion
of thymoglobulin therapy.

We classified patients with PTDM using the updated
2014 International Consensus Guidelines criteria of a FBG
level >126 mg/dl or HbA1c >6.5%.6 In contrast to kidney
and liver patients from the same institution who are fol-
lowed up at prescheduled intervals,7−9 heart transplant
patients were followed up at different frequent time inter-
vals, making collection of outpatient glucose data at spe-
cific time points difficult. Therefore, to compare glucose
values over time, we grouped follow-up visits into 3 time
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Abstract

Background

Hyperglycemia following solid organ transplant is common among patients without pre-

existing diabetes mellitus (DM). Post-transplant hyperglycemia can occur once or multiple

times, which if continued, causes new-onset diabetes after transplantation (NODAT).

Objective

To study if the first and recurrent incidence of hyperglycemia are affected differently by immu-

nosuppressive regimens, demographic and medical-related risk factors, and inpatient hyper-

glycemic conditions (i.e., an emphasis on the time course of post-transplant complications).

Methods

We conducted a retrospective analysis of 407 patients who underwent kidney transplanta-

tion at Mayo Clinic Arizona. Among these, there were 292 patients with no signs of DM prior

to transplant. For this category of patients, we evaluated the impact of (1) immunosuppres-

sive drugs (e.g., tacrolimus, sirolimus, and steroid), (2) demographic and medical-related

risk factors, and (3) inpatient hyperglycemic conditions on the first and recurrent incidence

of hyperglycemia in one year post-transplant. We employed two versions of Cox regression

analyses: (1) a time-dependent model to analyze the recurrent cases of hyperglycemia and

(2) a time-independent model to analyze the first incidence of hyperglycemia.

Results

Age (P = 0.018), HDL cholesterol (P = 0.010), and the average trough level of tacrolimus

(P<0.0001) are significant risk factors associated with the first incidence of hyperglycemia,

while age (P<0.0001), non-White race (P = 0.002), BMI (P = 0.002), HDL cholesterol (P =

0.003), uric acid (P = 0.012), and using steroid (P = 0.007) are the significant risk factors for

the recurrent cases of hyperglycemia.
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Abstract. Problem definition: Organ-transplanted patients typically receive high amounts
of immunosuppressive drugs (e.g., tacrolimus) as a mechanism to reduce their risk of organ
rejection. However, because of the diabetogenic effect of these drugs, this practice ex-
poses them to a greater risk of new-onset diabetes after transplantation (NODAT), and
hence, becoming insulin dependent. We study and develop effective medication man-
agement strategies to address the common conundrum of balancing the risk of organ
rejection versus that of NODAT. Academic/practical relevance: Our research contributes
to the healthcare operations management literature by developing a robust stochastic
decision-making framework that allows for incorporating (1) false-positive and false-
negative errors of medical tests, (2) inevitable estimation errors when data sets are used,
(3) variability among physician’ attitudes toward ambiguous outcomes, and (4) dynamic
and patient risk-profile-dependent progression of health conditions. Methodology: We
apply an ambiguous partially observable Markov decision process (APOMDP) approach
where dynamic optimization with respect to a “cloud” of possible models allows us to
make decisions that are robust to potential misspecifications of risks. Results: We first
provide various structural results that facilitate characterizing the optimal medication
policies. Utilizing a clinical data set, we then compare the performance of the optimal
medication policies obtained from our APOMDP model with the policies currently used
in the medical practice. We observe that, in one year after transplant, our proposed
policies can improve the life expectancy of each patient up to 4.58%, while reducing the
medical expenditures up to 11.57%. Managerial implications: Balancing the risks of organ
rejection and diabetes complications and considering factors such as physicians’ attitudes
toward ambiguous outcomes, partial observability of medical tests, and patient-specific
risk factors are shown to result in more cost-effective strategies for management of
post-transplant medications compared with the current medical practice. Finally, simul-
taneous management of medications can facilitate the care coordination process between
transplantation/nephrology and endocrinology departments of a hospital that are typi-
cally in charge of administering such medications.

Funding: This work was partially supported by the National Science Foundation [Award CMMI-
1562645].

Supplemental Material: The online appendix is available at https://doi.org/10.1287/msom.2019.0797.
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1. Introduction
As reported by the United Network of Organ Sharing
(2018), nearly 20,000 kidney transplantations were
conducted in the United States in 2017 (140,992 cases
since 2010). According to the Organ Procurement and
Transplantation Network (2011), the average cumu-
lative probability of 1-to-10-year organ rejection after
kidney transplantation is estimated to be 6.35%–48.7%.
To reduce the risk of organ rejection after transplant,
physicians typically use an intensive amount of an
immunosuppressive (also known as anti-rejection) drug

(e.g., tacrolimus). However, because of the well-known
diabetogenic effect, excessive exposure to an immuno-
suppressive drug may induce new-onset diabetes after
transplantation (NODAT), which refers to incidence of
diabetes in a patient with no history of diabetes prior
to transplantation (Chakkera et al. 2009).
To illustrate this point, we use a data set of 407

patients who had kidney transplant surgery at our
partner hospital between 1999 and 2006. Based on this
data set, Figure 1 depicts the empirical cumulative
distribution functions (cdfs) of blood glucose levels
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Abstract

Background

Most prior studies characterizing post-transplantation diabetes mellitus (PTDM) have been

limited to single-cohort, single-organ studies. This retrospective study determined PTDM

across organs by comparing incidence and risk factors among 346 liver and 407 kidney

transplant recipients from a single center.

Methods

Univariate and multivariate regression-based analyses were conducted to determine asso-

ciation of various risk factors and PTDM in the two cohorts, as well as differences in gluco-

metrics and insulin use across time points.

Results

There was a higher incidence of PTDM among liver versus kidney transplant recipients

(30% vs. 19%) at 1-year post-transplant. Liver transplant recipients demonstrated a 337%

higher odds association to PTDM (OR 3.37, 95% CI (1.38–8.25), p<0.01). 1-month FBG

was higher in kidney patients (135 mg/dL vs 104 mg/dL; p < .01), while 1-month insulin use

was higher in liver patients (61% vs 27%, p < .01). Age, BMI, insulin use, and inpatient FBG

were also significantly associated with differential PTDM risk.

Conclusions

Kidney and liver transplant patients have different PTDM risk profiles, both in terms of abso-

lute PTDM risk as well as time course of risk. Management of this population should better

reflect risk heterogeneity to short-term need for insulin therapy and potentially long-term

outcomes.
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Introduction
Solution 1 Experiments
Solution 2 Experiments

Immunosuppressive Drugs

Immunosuppressive drugs are used to bring the immune system down.

Advantage: Reduces risk of organ rejection

Disadvantage: diabetogenic effect (cause elevation in blood glucose).
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Introduction
Solution 1 Experiments
Solution 2 Experiments

Improving Outcomes Using Solution 2

Question: Can we develop an algorithm that can recommend personalized
treatments at each follow-up with causal improvements in patient
outcomes?

Challenge 1: This requires causal reasoning (with non-binary and
multi-stage treatments), since the estimand is a counterfactual quantity.

Challenge 2: Variables are time-varying and are affected by pervious
actions taken.

Challenge 3: Some unmeasured and time-varying variables might be
confounders (affecting both the outcome variables and actions).

Training data is observational data

Even in some secondary analyses of experimental data
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Introduction
Solution 1 Experiments
Solution 2 Experiments

Example: Mobile Health (mHealth) Applications

Figure: mHealth Ecosystem (Saghafian & Murphy, 2021?)

Goal: studying the effect of users following a treatment regime and not just being assigned
to it; Data might be experimental (e.g., MRT)

Unobserved Time-Varying Confounders: user habituation, engagement, and/or compliance.

?
Saghafian, S., and S.A. Murphy (2021). “Innovative Health Care Delivery: The Scientific and Regulatory Challenges in Designing

mHealth Interventions.” National Academy of Medicine.
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Solution 2 Experiments

Observed Covariates

Table: Observed Covariates (at each follow-up)

Var. No. Risk Factor (Abbr.) Unit Low Level Mid Level High Level Time-Varying

1 Glucose test† (FPG, HbA1c) mg/dL, % Healthy Pre-Diabetic Diabetic Yes

2 Trough level test‡ (C0) mg/dL [4, 8) [8, 10) [10, 14] Yes

3 Age Years <50 — ≥ 50 No

4 Gender — Female — Male No

5 Race — White — non-White No

6 Diabetes history (Diab Hist) — No — Yes No

7 Body mass index (BMI) kg/m2 <30 (non-obese) — ≥30 (obese) Yes

8 Blood pressure (BP) — Normal] — Hypertension Yes

9 Total cholesterol (Chol) mg/dL <200 — ≥200 Yes

10 High-density lipoportein (HDL) mg/dL ≥40 — <40 Yes

11 Low-density lipoportein (LDL) mg/dL <130 — ≥130 Yes

12 Triglyceride (TG) mg/dL <150 — ≥150 Yes

13 Uric acid (UA) mg/dL <7.3 — ≥7.3 Yes
†A patient with FPG≥126 (100 ≤FPG< 126) mg/dL or HbA1c≥6.5% (5.7 ≤HbA1c<6.5%) is labeled as diabetic (pre-diabetic),

and a patient with FPG<100 mg/dL or HbA1c<5.7% is labeled as healthy (ADA 2012).
‡C0 ∈ [4, 8), [8, 10), [10, 14] mg/dL is label as “low,” “medium,” and “high,” respectively.
]Normal Blood Pressure (BP) is defined as systolic (diastolic) BP less than 120 (80) mmHg.

Note: All variables with three levels are coded as 1,2, 3 (low, mid, high). All variables with two levels are coded as 1, 2 (low, high).
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Solution 2 Experiments

Big Picture Idea (To Address All Three Challenges)

We could adjust for unobserved time-varying confounders, if we could
impose a causal model for their dynamics and their impact on the
observed variables.

But we cannot learn such a model from training data, because we do not
have access to unobserved variables.

We will think of them as hidden variables and consider model ambiguity.

We consider a “cloud” of causal models as opposed to a single model.

Dynamic Treatment Regimes (DRT) ⇒ Ambiguous Dynamic Treatment
Regimes (ADTRs) (Saghafian 2023?)

We can study ADTRs using APOMDPs (Saghafian 2018?).

This allows us to develop Reinforcement Learning approaches to learn the
optimal treatment policy.

?
Saghafian, S. “Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach,” 2023, Management Science.

?
Saghafian, S. “Ambiguous Partially Observable Markov Decision Processes: Structural Results and Applications,” J. of Economic

Theory, 2018, 178, 1-35.
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Algorithm 1: DAV-Learning

1 for each observed trajectory and model m∈M do
2 Initialize πm0 using a random draw from F (π);
3 set t=1;
4 while t+ 1∈T do
5 πmt+1← T (πmt , at, ot,m);

6 for any given µe ∈Υ and m∈M do

7 ϕm,µ
e

n (ψ)← EP

[
∑
t∈T

[
µe(At|Πmt )

µb(At|Πmt )

[
Gt +β V m,µ

e

∞ (T (Πm
t ,At,Ot,m))−V m,µe∞ (Πm

t )
]
b(Πm

t )

]]
;

8 ψ̂
m,µe

n ← argminψ∈Ψ

{(
ϕm,µ

e

n (ψ)
)′

Ωϕm,µ
e

n (ψ) + θnP(ψ)

}
;

9 V̂ m,µ
e

∞ (π)←
(
b(π))′ ψ̂

m,µe

n ;

10 Γ̂m∞(µe)←
∫
V̂ m,µ

e

∞ (π)dF (π);

11 for any given µe ∈Υ do

12 Γ̂∞(µe)← α infm∈M Γ̂m∞(µe) + (1−α) supm∈M Γ̂m∞(µe);

13 µ̂e∗← argmaxµe∈Υ Γ̂∞(µe);

14 Γ̂∞(µ̂e∗)←maxµe∈Υ Γ̂∞(µe);

where Ψ ⊆ Rd. Similar to before, we make use of the piecewise linearity and continuity of the

value function (i.e., the fact that V m,µe

∞ ∈ V ) for all m ∈M . This allows us to use predefined

basis function to ensure that the learned function remains in V when we use the parametric form

V m,µe

∞ (π,ψ),
(
b(π))′ψ.

Using (17), we then set V̂ m,µe

∞ (π), V m,µe

∞ (π; ψ̂
m,µe

n ). In addition, denoting the infinite-horizon

gain under any policy µe and m ∈M by Γm∞(µe) ,
∫
V m,µe

∞ (π)dF (π), we consider Γ̂m∞(µe) ,
∫
V̂ m,µe

∞ (π)dF (π) as an estimator for Γm∞(µe). With estimated values under each model m in

hand, we next define the estimated overall gain (a model independent value) as Γ̂∞(µe) ,
α infm∈M Γ̂m∞(µe) + (1 − α) supm∈M Γ̂m∞(µe), which provides an estimation for the overall gain

Γ∞(µe), α infm∈M Γm∞(µe) + (1−α) supm∈M Γm∞(µe).

Finally, the estimated optimal policy and its infinite-horizon value for the APOMDP are obtained

as µ̂e∗ , argmaxµe∈Υ Γ̂∞(µe) and Γ̂∞(µ̂e∗) = maxµe∈Υ Γ̂∞(µe), respectively, where the latter pro-

vides an estimate for Γ∞(µe∗) , maxµe∈Υ Γ∞(µe∗). Similarly, under each model m, we denote

the estimated optimal policy and its infinite-horizon value as µ̂e∗,m , argmaxµe∈Υ Γ̂m∞(µe), and

Γ̂m∞(µ̂e∗,m) = maxµe∈Υ Γ̂m∞(µe), respectively, where the latter provides an estimate for Γm∞(µe∗,m),
maxµe∈Υ Γm∞(µe∗,m).

4.2.2. Safe Augmented V-Learning (SAV-Learning). The DAV-Learning algorithm pre-

sented in the previous section is a direct extension of the approach proposed for POMDPs (Section

4.1) in which “the curse of ambiguity” is overcome at the end. In contrast, in SAV-Learning,

this curse is overcome upfront via a “safe method” for estimating the underlying parameter ψt,

and hence, the value function. To develop the SAV-Learning algorithm, similar to before, we first

denote the APOMDP value function with t periods to go under policy µe (a model independent
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Algorithm 2: SAV-Learning

1 for each observed trajectory and model m∈M do
2 Initialize πm0 using a random draw from F (π);
3 set t=1;
4 while t+ 1∈T do
5 πmt+1← T (πmt , at, ot,m);

6 for any given µe ∈Υ and m∈M do

7 ϕm,µ
e

n (ψ)← EP

[
∑
t∈T

[
µe(At|Πmt )

µb(At|Πmt )

[
Gt +β V m,µ

e

∞ (T (Πm
t ,At,Ot,m))−V m,µe∞ (Πm

t )
]
b(Πm

t )

]]
;

8 ψ̂
m,µe

n ← argminψ∈Ψ

{(
ϕm,µ

e

n (ψ)
)′

Ωϕm,µ
e

n (ψ) + θnP(ψ)

}
;

9 for any given µe ∈Υ do

10 m← arginfm∈M ||ψ̂m,µ
e

n ||;
11 m← argsupm∈M ||ψ̂

m,µe

n ||;
12 ψ̂

µe

n ← α ψ̂
m,µe

n + (1−α) ψ̂
m,µe

n ;

13 V̂ µ
e

∞ (π)←
(
b(π))′ ψ̂

µe

n ;

14 Γ̂∞(µe)←
∫
V̂ µ

e

∞ (π)dF (π);

15 µ̂e∗← argmaxµe∈Υ Γ̂∞(µe);

16 Γ̂∞(µ̂e∗)←maxµe∈Υ Γ̂∞(µe);

(Theorem 1). We then move to the estimators related to the optimal policy, and establish weak

consistency and asymptotic normality of both the estimated optimal policy and its estimated value

(Theorem 2). To establish our results, we make use of arguments in empirical processes (specifically

for stationary process as opposed to i.i.d. ones; see, e.g., Dedecker and Louhichi (2002), Kosorok

(2008)), and think of each realization of the underlying stochastic process as a function in `∞(Υ)

(i.e., the set of real-valued bounded functions indexed by µe ∈Υ).

We assume Ω in (17) is an arbitrary positive-definite matrix, P(·) is the squared norm penalty

function, and θn is a tuning parameter satisfying θn = op(n
−1/2). We also assume that Em

[
||b(Πt)||2

]

and Em
[
G2
t

]
are both finite values for all m ∈M and t ∈ T . Some other technical conditions

are needed, mainly because of two broad set of challenges in our setting which make establishing

asymptotic results more involved: (1) the underlying process is not i.i.d over time, and (2) there

is model ambiguity (|M | 6= 1). Specifically, we need the following “regularity” conditions on the

parameter space, trajectories space, policy space, and models space:

(C1) For every µe ∈ Υ and m ∈M there exist a unique solution to ϕm,µ
e
(ψ) = 0 denoted by

ψm,µe

� ∈Ψ ⊆ Rd, where supµe∈Υ ||ψm,µe

� || <∞, ψm,µe

� is an interior point of Ψ, and Ψ is

compact subset of Rd.

(C2) There exists a 2<ρ<∞ such that for all m∈M :

(C2a) The class of policies (Υ) is either finite, or its bracketing integral satisfies

J[](∞,Υ,Lρ(Pm)) <∞, where Pm is the marginal stationary distribution of the

sequence {(Πm
t ,At)}t≥1.20

20 For the definition of the bracketing integral, J[](∞,Υ,Lρ(Pm)), see, e.g., Kosorok (2008).
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Improvements Compared to the Current Practice (Mayo Clinic)
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Result Summary

Both learning methods allow for two-way personalization.

Both learning methods yield substantial improvements (ranges:
DAV-Learning=(10%, 42%) and SAV-Learning=(10%, 32%)).
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Summary (Solution 2 Experiments)

DAV-Learning and SAV-Learning both perform very well (both in
experiments with Mayo Clinic and in using synthetic data).

Allows for two-way personalization.

Enable you to use any data set (e.g., an observational data set) and
address:

√
Challenge 1: causal reasoning with non-binary and multi-stage

treatments

√
Challenge 2: Variables are time-varying and are affected by pervious

actions taken

√
Challenge 3: Some unmeasured and time-varying variables might be

confounders
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Conclusion

Problem: AI and ML tools are not as impactful as they can be in the medical
practice.

Solution 1: Using centaur models of AI/ML

Solution 2: Enabling AI/ML to do causal reasoning under ambiguity

Next Step:? Creating a LLM that incorporates Solutions 1 and 2 (chat-based
physician assistant).

?
Large-scale grant from DoD (Congressionally Directed Medical Research Programs), and collaborations with DFCI and Brigham and

Women Hospital.
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Thank You!

Soroush Saghafian

Public Impact Analytics Science Lab (PIAS Lab)

@PIASLab

Lab: Public Impact Analytics Science Lab (PIAS-Lab)
Web: http://scholar.harvard.edu/saghafian
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