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@ Devotion: advancing and applying the science of analytics for solving
societal problems that can have public impact.

@ Mission: improving societal outcomes by developing and integrating tools
in Operations Research, Machine Learning and Big Data, Decision
Making, Statistics, Artificial Intelligence (Al), and related fields.

o Focus: various aspects of the healthcare sector.
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Motivation (Based on Various Collaborations)

Problem: Al and ML tools are not as impactful as they can be in the medical
practice.

Question: How can we enhance Al and ML so they become impactful in
practice?
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Introduction

Motivation (Cont'd)
Healthcare Sector Will Devote 10.5% of
Spending to Al

BY PYMNTS Ov@n
SEPTEMBER 5, 2023 o0

The healthcare sector is projected to nearly double its spending on artificial intelligence (Al).

Arecent report by Morgan Stanley says that the amount allocated to Al and machine learning (ML) in
health company budgets is anticipated to be 10.5% next year, compared to 5.5% in 2022. The
investment bank says that 94% of healthcare companies are using Al and/or ML in some capacity.
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Major Issues (Observations)

@ Algorithm Aversion: Physicians do not put enough weight on the advice
from algorithms.

@ Human Aversion: Recommendations from algorithms do not match
physicians’ intuition.

© Causation Aversion: Algorithms are based on associations between
variables (risk prediction) and lack causal reasoning. Physicians need help
with complex causal reasoning, especial because of inevitable ambiguity.
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o Greek Mythology: half-human and half-horse. More powerful than both.

@ Al/ML: Combining the power of algorithms with human intuition.
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Solution 1: A Model of Al/ML

@ The world's first championship of centaur style chess organized by
Kasparov (1998).

@ Kasparov: Human paired with algorithms can do better than just the best
algorithms.

“Weak human plus machine plus better process was superior to a strong

computer alone and, more remarkably, superior to a strong human plus
machine plus inferior process.”

@ Our findings (experiments at the Mayo Clinic):
@ Centaurs >> both best human experts and strongest algorithms.
@ Centaurs address both algorithm aversion and human aversion.
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ML/Al Focus

Where we
need to
focus

@ Probabilistic views

Introduction

on the

Ladder of Causation (Judea Pearl)

Level Typical Typical Questions

(Symbol) Activity

1. Association Seeing What is?

P(y|z) How would seeing X
change my belief inY?

2. Intervention Doing What if?

P(yldo(), z)

Intervening

What if I do X7

3. Counterfactuals
P(yzla’,y')

Imagining,
Retrospection

Why?

Was it X that caused Y'?
What if I had acted
differently?
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Ladder of Causation (Judea Pearl)

Level Typical Typical Questions

(Symbol) Activity

1. Association Seeing What is?

P(y|z) How would seeing X
Current change my belief inY?

ML/AIl Focus

2. Intervention Doing What if?

P(y|do(z), z) Intervening What if I do X?

3. Counterfactuals Imagining, Why?

Where we P(y|2’,y") Retrospection Was it X that caused Y?
need to What if I had acted
focus differently?

@ Probabilistic views = Ignore the fact that physicians:
o Have to deal with ambiguity (Knightian uncertainty)

o Have different ambiguity attitudes
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Solution 2: Al/ML for

Reinforcement Learning Alg.
Causal Reasoning under Ambiguity

Observational Data

Physicians's Preferences

\ p ‘ Personalized Dynamic Treatment
@] d Regime (for each patient and physician)

@ Our findings (experiments at the Mayo Clinic):

© Generates superior treatment regimes: yield causal improvements.

@ Allows for two-way personalization: personalization based on both patient
and physician characteristics.
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Study Design

3. Online

NI[a%5%

Solution 1 Experiments

A retrospective dataset from the Mayo Clinic was collected.
Data included large sample of patients with liver, kidney, or heart transplantation.

Developed and validated a machine learning model that predicts readmission across all
solid organ transplant patients.

Derived actionable clinical insights per organ.

Designed an online survey tool to compare the assessment of human experts versus the
machine learning model.

Tailored to gather individual feedback on the accuracy, clinical drivers of risk, and
operational impact of the readmission score.
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@ ML’s out-of-sample AUC: 84.00%

Experts’ out-of-sample AUC without ML: 55.03%

Experts’ out-of-sample AUC with ML: 61.24%

o Low improvement due to low weight on advice

o Weight on advice: 36.33%

Centaur’s out-of-sample AUC: 86.46%
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Average Predicted Readmission Risk

Observation: physicians mainly overestimate the risk; they are conservative.
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Summary (Solution 1 Experiments)

The performance of the ML model was significantly more accurate than the experts

ML models places more emphasis on factors that differ from the medical intuition

Physicians rarely take into account the ML model prediction.
ML recommendations improve the clinical risk perception but it is still outperformed

When ML uses human intuition as an input, even if it is not very accurate, its performance

improves.

Observation: main suggested change after “nothing:" better glucose
management.
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Solution 2 Experiments: Improving outcomes for patients who undergo
solid organ transplantation (kidney, liver, heart)
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NODAT: Incidence of diabetes in patients with no history of diabetes prior to
transplantation.
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Figure: The left (right) vertical dotted line: the threshold for prediabetes (diabetes) as
defined by American Diabetes Association (2012).

22/35



Solution 2 Experiments

New-Onset Diabetes After Transplantation (NODAT)

MAYO
CLINIC

23/35



Solution 2 Experiments

New-Onset Diabetes After Transplantation (NODAT)

ORIGINAL PAPER

MAYO el
CLINIC Oy

p”. 4 FOUﬂdaUOn s Use of ion and Decision i
T b o to Improve Diagnosis and Management of
Patients at Risk for New-Onset Diabetes After
Transplantation

el 23290358

23/35



Solution 2 Experiments

New-Onset Diabetes After Transplantation (NODAT)

MAYO
CLINIC

ORIGINAL PAPER
cissumsarss
Use of ion and Decision
to Improve Diagnosis and Management of
Patients at Risk for New-Onset Diabetes After
Transplantation

Incidence, Risk Factors, and Trends for Postheart
Transplantation Diabetes Mellitus

Vidit N. Munshi, MA**, Soroush Saghafian, PhD", Curtiss B. Cook, MD*, D. Eric Steidley, MD'
Brian Hardaway, MD', and Harini A. Chakkera, MD, MPH'

23/35



Solution 2 Experiments

New-Onset Diabetes After Transplantation (NODAT)

MAYO
CLINIC

ORIGINAL PAPER

3FI.lN%
; eISSN 2329.0358
ZATION St St

.
% National
4 Science

* Foundation

’\r: Use of ion and Decision
Y et to Improve Diagnosis and Management of
Patients at Risk for New-Onset Diabetes After
Transplantation
RESEARCH ARTICLE

Characterization of Remitting and Relapsing
Hyperglycemia in Post-Renal-Transplant
Recipients

Alireza Boloori', Soroush Saghafian®*, Harini A. Chakkera®, Curtiss B. Cook®

1 Department of Industrial Engineering, School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, Arizona, United States of America, 2 Harvard Kennedy
School, Harvard University, Cambridge, Massachusetts, United States of America, 3 Division of Nephrology
and Transplantation, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America,
4Division of Endocrinology, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America

Incidence, Risk Factors, and Trends for Postheart
Transplantation Diabetes Mellitus

Vidit N. Munshi, MA™*, Soroush Saghafian, PhD", Curtiss B. Cook, MD*, D. Eric Si
Brian Hardaway, MD*, and Harini A. Chakkera, MD, MPH* * Soroush_Saghafian @hks.harvard.edu

23/35



Solution 2 Experiments

New-Onset Diabetes After Transplantation (NODAT)

MAYO
CLINIC

Science
Foundation

Incidence, Risk Factors, and Trends for Postheart
Transplantation Diabetes Mellitus

Vidit N. Munshi, MA*,
rian

roush Saghafian, PhD', Curtiss B. Cook, MDY, D. i
ardaway, MD', and Harini A. Chakkera, MD, MP]

Data-Driven Management of Post-transplant Medications:
An Ambiguous Partially Observable Markov Decision
Process Approach

Allreza Boloor * Soroush Saghafian.” Harini A. Chakkera,” Curliss B. Cook®

vy, Tempe, Arons 5251 Harard Kenody School, Harard ey
aton and Endocrinclogy, Mayo Clinic Hos cni, Atzon 53051

o harsard . @ hip /o org 0000 )

o.ed (CBC)

“Dxparmentof I g Ao
Massachusetts w‘-mwwnm

s (AB) sorous

ot (G cookcuti

sttt

ORIGINAL PAPER

§TIIINS

<ATIIIN S
o Use of ion and Decision
g to Improve Diagnosis and Management of

Patients at Risk for New-Onset Diabetes After
Transplantation

Characterization of Remitting and Relapsing
Hyperglycemia in Post-Renal-Transplant
Recipients

Alireza Boloori', Soroush Saghafian®*, Harini A. Chakkera®, Curtiss B. Cook®

1 Department of Industrial Engineering, School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, Arizona, United States of America, 2 Harvard Kennedy
School, Harvard University, Cambridge, Massachusetts, United States of America, 3 Division of Nephrology
and Transplantation, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America,
4Division of Endocrinology, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America

* Soroush_Saghafian@hks.harvard.edu

23/35



Solution 2 Experiments

New-Onset Diabetes After Transplantation (NODAT

MAYO
CLINIC

5 National
‘d Science
Foundation

Incidence, Risk Factors, and Trends for Postheart
Transplantation Diabetes Mellitus

D, and Harini A. Chakk . MPH'

Vidit N. Munshi, MA**, Soroush Saghafian, PhD", Curtiss B. Cook, MD*, D. Eric St
Bria laway,

Data-Driven Management of Post-transplant Medications:
An Ambiguous Partially Observable Markov Decision
Process Approach

Aiireza Boloori* Soroush Saghafian,” Harini A. Chakkera,* Curtiss B. Cook®

ard Universiy.
Arizona 85051

“Department of Industral

ﬁm“s ORIGINAL PAPER

=PLANT
<l'|'|lll|

cissumsarss
Use of ion and Decision

to Improve Diagnosis and Management of

Patients at Risk for New-Onset Diabetes After
Transplantation

Characterization of Remitting and Relapsing
Hyperglycemia in Post-Renal-Transplant
Recipients

Alireza Boloori', Soroush Saghafian®*, Harini A. Chakkera®, Curtiss B. Cook®

1 Department of Industrial Engineering, School of Computing, Informatics and Decision Systems
Engineering, Arizona State University, Tempe, Arizona, United States of America, 2 Harvard Kennedy
School, Harvard University, Cambridge, Massachusetts, United States of America, 3 Division of Nephrology
and Transplantation, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America,

4 Division of Endocrinology, Mayo Clinic School of Medicine, Scottsdale, Arizona, United States of America

* Soroush_Saghafian@hks.harvard.edu

RESEARCH ARTICLE
Comparison of post-transplantation diabetes
mellitus incidence and risk factors between
kidney and liver transplantation patients

ViditN. Munshic'*, Soroush Saghafian?, Curtiss B. Cook’, K. Tuesday Werner®, Harini
A. Chakkera®

1 PhD Program Harvard University, Cambridge,
2 Harvard Kennedy School, Harvard University, Cambridge, Massachusetts, United States of America,
3 Mayo Clinic Arizona, Scottsdale, Arizona,

23/35



Solution 2 Experiments

Immunosuppressive Drugs

24/35



Solution 2 Experiments

Immunosuppressive Drugs

24/35



Solution 2 Experiments

Immunosuppressive Drugs

Immunosuppressive drugs are used to bring the immune system down.

24/35



Solution 2 Experiments

Immunosuppressive Drugs

Immunosuppressive drugs are used to bring the immune system down.

@ Advantage: Reduces risk of organ rejection

24/35



Solution 2 Experiments

Immunosuppressive Drugs

Immunosuppressive drugs are used to bring the immune system down.
@ Advantage: Reduces risk of organ rejection

o Disadvantage: diabetogenic effect (cause elevation in blood glucose).
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Question: Can we develop an algorithm that can recommend personalized
treatments at each follow-up with causal improvements in patient
outcomes?

Challenge 1: This requires causal reasoning (with non-binary and
multi-stage treatments), since the estimand is a counterfactual quantity.

Challenge 2: Variables are time-varying and are affected by pervious
actions taken.

Challenge 3: Some unmeasured and time-varying variables might be
confounders (affecting both the outcome variables and actions).

e Training data is observational data
o Even in some secondary analyses of experimental data
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Example: Mobile Health (mHealth) Applications
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Figure: mHealth Ecosystem (Saghafian & Murphy, 2021*)

*Saghafian, S., and S.A. Murphy (2021). “Innovative Health Care Delivery: The Scientific and Regulatory Challenges in Designing
mHealth Interventions.” National Academy of Medicine.
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Figure: mHealth Ecosystem (Saghafian & Murphy, 2021*)

@ Goal: studying the effect of users following a treatment regime and not just being assigned
to it; Data might be experimental (e.g., MRT)

*Saghafian, S., and S.A. Murphy (2021). “Innovative Health Care Delivery: The Scientific and Regulatory Challenges in Designing
mHealth Interventions.” National Academy of Medicine.
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Example: Mobile Health (mHealth) Applications
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Figure: mHealth Ecosystem (Saghafian & Murphy, 2021*)

@ Goal: studying the effect of users following a treatment regime and not just being assigned

to it; Data might be experimental (e.g.

, MRT)

@ Unobserved Time-Varying Confounders: user habituation, engagement, and/or compliance.

*Saghafian, S., and S.A. Murphy (2021). “Innovative Health Care Delivery: The Scientific and Regulatory Challenges in Designing

mHealth Interventions.” National Academy of Medicine.
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Solution 2 Experiments

Observed Covariates

Table: Observed Covariates (at each follow-up)

Var. No. _ Risk Factor (Abbr.) Unit Low Level Mid Level High Level Time-Varying
1 Glucose testT (FPG, HbALc) mg/dL, % Healthy Pre-Diabetic Diabetic Yes
2 Trough level test? (Cp) mg/dL [4,8) 8, 10) 10, 14] Yes
3 Age Years <50 — > 50 No
4 Gender — Female — Male No
5 Race — White — non-White No
6 Diabetes history (Diab Hist) — No — Yes No
7 Body mass index (BMI) kg/m? <30 (non-obese) — >30 (obese) Yes
8 Blood pressure (BP) — Normal® — Hypertension Yes
9 Total cholesterol (Chol) mg/dL <200 — >200 Yes
10 High-density lipoportein (HDL) mg/dL >40 — <40 Yes
1 Low-density lipoportein (LDL) mg/dL <130 — >130 Yes
12 Triglyceride (TG) mg/dL <150 — >150 Yes
13 Uric acid (UA) mg/dL <73 — >73 Yes

TA patient with FPG>126 (100 <FPG< 126) mg/dL or HbA1c>6.5% (5.7 <HbALc<6.5%) is labeled as diabetic (pre-diabetic),
and a patient with FPG<100 mg/dL or HbALc<5.7% is labeled as healthy (ADA 2012)

t¢p € [4,8), [8,10), [10, 14] mg/dL is label as “low," “medium,” and “high," respectively.

¥ Normal Blood Pressure (BP) is defined as systolic (diastolic) BP less than 120 (80) mmHg

Note: All variables with three levels are coded as 1,2, 3 (low, mid, high). All variables with two levels are coded as 1, 2 (low, high).
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Big Picture Idea (To Address All Three Challenges)

@ We could adjust for unobserved time-varying confounders, if we could
impose a causal model for their dynamics and their impact on the
observed variables.

@ But we cannot learn such a model from training data, because we do not
have access to unobserved variables.

@ We will think of them as hidden variables and consider model ambiguity.
@ We consider a “cloud” of causal models as opposed to a single model.

@ Dynamic Treatment Regimes (DRT) = Ambiguous Dynamic Treatment
Regimes (ADTRs) (Saghafian 2023*)

@ We can study ADTRs using APOMDPs (Saghafian 2018*).

@ This allows us to develop Reinforcement Learning approaches to learn the
optimal treatment policy.

*Saghafian, S. “Ambiguous Dynamic Treatment Regimes: A Reinforcement Learning Approach,” 2023, Management Science.

* Saghafian, S. “Ambiguous Partially Observable Markov Decision Processes: Structural Results and Applications,” J. of Economic
Theory, 2018, 178, 1-35. 29/35
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Solution 2 Experiments

Direct Augmented V-Learning (DAV-Learnin

Algorithm 1: DAV-Learning

1 for each observed trajectory and model m € .4 do
2 Initialize 7{ using a random draw from F(m);
3 set t=1;

4 while t +1€ .7 do

5 L 7y T (w) a,00,m);

6 for any given u° €Y and m € .# do
7 M“<ww—ﬂ[Zﬁg[%%%%%ﬁﬁ+5Vm“<TaI Ahohm»—v;#%nrﬂunrﬂ}
8 | 9" argminges {(w:{“‘" (W) Qi () +em<w)}:

o | Tz () e (b(m) Bt
10 7 (o) = [ VIors () dF (r);

11 for any gwen peeY do

12 L Poo () = ainfe.e D7 (1) + (1 — @) sup,,c_, [T (1°);
13 p°* eargmaxucerF (p°);

12 Do (4°%) ¢ maxye ey Doo (1°);
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Safe Augmented V-Learning (SAV-Learning)

Algorithm 2: SAV-Learning

1 for each observed trajectory and model m € .# do
2 Initialize 7" using a random draw from F(w);
3 set t=1;
a
5

whllet+16§do
L 7y = T(w),ar,00,m);

6 for any gwen p® € Y and m € .4 do
7 so::“““(wwE?[Efea [ e+ v arome, AuOmn»fV;"“"(H:"ﬂb(Hl”)”:

nb (A

5 om, €

8 P, " <« argmingecy {(wl}“““(zﬁ))’nw-“‘ (1l))+0n77(¢‘)};

9 for any given pu° €Y do

10 m < arginf e |9 e H
11 m 4 argsup,,c o |I%7) “I;
ue m,pé

12 P aght +(1—Fu){pf'“€;
13 L“(W)H(( ) W
14 (1) [ V2 (7) dF (m);

15 " eargma.xucETF,,(u );

16 T'oo (A°") ¢~ maxpeer I'oo (1);

31/35



Solution 2 Experiments

Improvements Compared to the Current Practice (Mayo Clinic)

32/35



Solution 2 Experiments

Improvements Compared to the Current Practice (Mayo Clinic)

100

80

maximax values maximin values

%)

(

Improvement

0
0.0 0.2 0.4 0.6 0.8 10
Physician's Conservatism Level (Ambiguity Attitude)

32/35



Solution 2 Experiments

Improvements Compared to the Current Practice (Mayo Clinic)

100

80

maximax values maximin values

%)

(

Improvement

0
0.0 0.2 0.4 0.6 0.8 10
Physician's Conservatism Level (Ambiguity Attitude)

Result Summary

32/35



Solution 2 Experiments

Improvements Compared to the Current Practice (Mayo Clinic)

100

80

maximax values maximin values

%)

(

Improvement

0
0.0 0.2 0.4 0.6 0.8 10
Physician's Conservatism Level (Ambiguity Attitude)

Result Summary

o Both learning methods allow for two-way personalization.

32/35



Solution 2 Experiments

Improvements Compared to the Current Practice (Mayo Clinic)

DAV-Learning
SAV-Learning

maximax values maximin values

Improvement (%)

0
0.0 0.2 0.4 0.6 0.8 10
Physician's Conservatism Level (Ambiguity Attitude)

Result Summary

o Both learning methods allow for two-way personalization.

@ Both learning methods yield substantial improvements (ranges:
DAV-Learning=(10%, 42%) and SAV-Learning=(10%, 32%)).
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Conclusion

Problem: Al and ML tools are not as impactful as they can be in the medical
practice.

Solution 1: Using centaur models of Al/ML
Solution 2: Enabling Al/ML to do causal reasoning under ambiguity

Next Step:* Creating a LLM that incorporates Solutions 1 and 2 (chat-based
physician assistant).

* Large-scale grant from DoD (Congressionally Directed Medical Research Programs), and collaborations with DFCI and Brigham and
Women Hospital.
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