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Telemedicine Adoption

https://www.mckinsey.com/industries/healthcare/our-insights/telehealth-a-quarter-trillion-dollar-post-covid-19-reality

• Growth in telemedicine usage peaked during April 2020 but has 
since stabilized



Pros and Cons of Telemedicine

• Pro:
• Could get appointment sooner

• Save time and money

• In the safety of patient’s own home or workplace

• Con:

• Telemedicine is not right for every situation 

Duplicative care: Unsuitable telemedicine visits 
lead to redundant in-person evaluation, which in 
turn generates more workload for the system  



Specialty care

• The level of duplicative care after telemedicine is heterogeneous, and 
depends highly on the specialty and the patient

Primary care

Pros and Cons of Telemedicine

https://www.epicresearch.org/articles/telehealth-visits-unlikely-to-require-in-person-follow-up-within-90-days



The Choice Is in Patients’ Hands
“Growing Pains: […] As the system grew quickly, providers were also frustrated with 
having inappropriate patients scheduled for video visits versus in-person visits and 
wanted changes to the triaging and scheduling system”  
- Srinivasan et al. Annals of internal medicine (2020) 

Problem:
Patients lack information 
to make self-interested 
decisions

Possible remedy: 
Design an online-triage tool 
to provide information and 
recommendation 

Questions:
Does providing more information to patients reduce duplicate care?
Are there other operational tools that can improve system performance?
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Our Contribution
Addressing the question of care redundancy: How and when to 
implement online triaging and prioritization in a dual care modalities 
system 

Model 

• A queueing-game model that incorporates:

• Patients’ choices between care modalities 

• Two operational levers: Information, Prioritization

Case study

• A prediction model that forecasts the need for a follow-up visit after a 
telemedicine visit

• Model calibration: how priorities and triage impact waiting times? 



QUEUEING-GAME MODEL

Motivation Queueing Game Case Study Summary



The Model

Tele visit

In-person visit

𝜇1

𝜇2

Type 𝑡
𝑤. 𝑝.  𝑓(𝑡)𝜆

𝑤. 𝑝. 1 − 𝑓(𝑡)

𝑤. 𝑝. 1



Two Information Granularity Regimes

Information
Average chance for a  

follow-up
Patient’s own chance 

for a follow-up

Crude Information Know Unknow

Refined Information Know Know



Patients’ Strategies
• Patients’ decision is based on wait-time 

comparison
• If the patient chooses in-person visit: 

𝑊𝑖𝑛_𝑝𝑒𝑟𝑠𝑜𝑛 =  𝑊2

• If the patient chooses telemedicine: 
𝑊𝑡𝑒𝑙𝑒 = 𝑊1 + 𝑊2 ∗ 1{𝑓𝑜𝑙𝑙𝑜𝑤−𝑢𝑝}

Patients’ objective: minimize the expected 
total waiting time
Patients’ strategy: a probability of joining tele-
visits 

Tele visit

In-person 
visit

𝜇1

𝜇2

Type 𝑡
𝑓(𝑡)

1 − 𝑓(𝑡)



𝑡
10

𝒕∗

Tele
In

person

Crude information regime:
• There exists a unique 
 crude equilibrium strategy:
P% of the patients choose telemedicine
(1-P)% of the patients choose in-person

Refined information regime:

• There exists a unique refined 
equilibrium that depends on patient’s 
health severity level 

Patients’ Equilibrium Strategy

Follow-up probability



Does Providing More Information Help?

(Tele)

𝑊𝑐𝑟𝑢𝑑𝑒 = 𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝑊𝑐𝑟𝑢𝑑𝑒 > 𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝑊𝑐𝑟𝑢𝑑𝑒 < 𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝜇1 (𝑇𝑒𝑙𝑒)

𝜇
2

(𝐼
𝑛

−
𝑝

𝑒𝑟
𝑠𝑜

𝑛
)

• Assessing the online triage tool in terms of average waiting time

Conclusion: Providing more information may increase the average waiting time!



System’s First Best

• System’s first best strategy ҧ𝑡: Centralized routing decisions with 
refined information to achieve the minimum average waiting time

ҧ𝑡
𝑡

10 𝑡∗

Tele In-
person

Avg follow-up prob high: Conservative

ҧ𝑡
𝑡

10 𝑡∗

Tele
In-

person

Avg follow-up prob low: Proactive

Follow-up probability Follow-up probability



System’s First Best vs. Refined Equilibrium

(Tele)

(I
n

 p
e

rs
on

)

𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑 > 𝑊𝑓𝑖𝑟𝑠𝑡 𝑏𝑒𝑠𝑡

𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

= 𝑊𝑓𝑖𝑟𝑠𝑡 𝑏𝑒𝑠𝑡

𝜇1 (𝑇𝑒𝑙𝑒)

𝜇
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(𝐼
𝑛

−
𝑝

𝑒𝑟
𝑠𝑜

𝑛
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Coordination Mechanism: Priority Rule

Tele visit

In-person 
visit

𝜇1

𝜇2

𝜆

Case 1: 𝑡∗ < ҧ𝑡

Priority with 
probability q

Tele visit

In-person 
visit

𝜇1

𝜇2

𝜆

Case 2: 𝑡∗ > ҧ𝑡

Priority with 
probability q



Strict priority improves W

Partial priority 
achieves first best

Strict priority, achieve
first best 

𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

= 𝑊𝑓𝑖𝑟𝑠𝑡 𝑏𝑒𝑠𝑡

𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑 > 𝑊𝑓𝑖𝑟𝑠𝑡 𝑏𝑒𝑠𝑡

𝜇1  (𝑇𝑒𝑙𝑒)

𝜇
2

(𝐼
𝑛

−
𝑝

𝑒𝑟
𝑠𝑜

𝑛
)

Coordination Mechanism: Priority Rule



• Performance measure: Average waiting time

Effect of The Two Operational Levers

𝑊𝑐𝑟𝑢𝑑𝑒 > 𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝑊𝑐𝑟𝑢𝑑𝑒 = 𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

𝑊𝑐𝑟𝑢𝑑𝑒 < 𝑊𝑟𝑒𝑓𝑖𝑛𝑒𝑑

Strict priority, improved 

Partial priority, optimal 

𝑊𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚

= 𝑊𝑓𝑖𝑟𝑠𝑡𝑏𝑒𝑠𝑡

Do nothing 

Info , Info&priority 

Info , Info&priority 

Info , Info&priority 

𝜇1  (𝑇𝑒𝑙𝑒)

𝜇
2

(𝐼
𝑛

−
𝑝

𝑒
𝑟

𝑠𝑜
𝑛

)

No impact

Improved

Optimal

Worse



CASE STUDY

Motivation Queueing Game Case Study Summary



Prediction Model

• We collect data regarding outpatient visits at a large academic 
hospital in Maryland from 01/2020 to 09/2023 

• Starting from 2021, the hospital provided telemedicine options 
for a variety of preprocedural examinations

• Visit code = Z01818

• 3,275 total visits, 210 telemedicine visits (6.412% usage rate)



Prediction Model

• Prediction target: whether a patient requires an in-person follow-
up visit within 7, 14, 21, and 30 days of a prior visit

• Logistic regression with the following covariates: 
• Time fixed effect: year, quarter

• Patient demographic information: age, sex, ethnicity, county

• Ailment types: diagnosis codes

• Payment type: commercial insurance, self-pay, Medicare, Medicaid, charity

• Source of arrival: home, other hospital sites

• Comorbidities: Charlson comorbidity index

• Personal preference for in-person visits: # in-person visits in 2020

• Care modality: telemedicine, in-person visit



Prediction Model
• The logistic regression outputs the probability of requiring an in-

person follow-up visit after telemedicine

• Heterogeneity in the 
efficacy of telemedicine 
treatment across patients

Distribution of 7-day in-person follow-up probabilities 

Probability

D
en

si
ty



• Hourly arrival rate of the sample patients

   𝜆 =
# sample patients

# working hours
= 0.572 patients/hour

• Hourly service speed of the sample patients via telemedicine

         𝜇1 =
60 min per hour

23 min per telemedicine visit
×  proportion of sample patient𝑠

               = 0.039 patients/hour

• Hourly service speed of the sample patients via in-person visits

𝜇2 = telemedicine service rate ×
in−person throughout

telemedicine throughput

   = 0.566 patients/hour

 

Model Calibration



Counterfactual Analysis



Counterfactual Analysis

Crude Refined First Best

𝒑∗ 𝒕∗ ҧ𝒕

Strategy 4.3% 3.9% 5.6%

Average waiting time Crude Refined First Best

Across all patients 14.48 8.56 6.18

At the telemedicine queue 8.76 7.62 19.14

Average waiting time 14.48 8.58 5.38

• Parameter regime: Information     , information & priority    

• Crude equilibrium, refined equilibrium, system’s first best

• Average waiting time (days)

41%↓



Counterfactual Analysis

Crude Refined First Best

𝒑∗ 𝒕∗ ҧ𝒕

Strategy 4.3% 3.9% 5.6%

Average waiting time Crude Refined Priority First Best

Across all patients 14.48 8.56 8.13 6.18

At the telemedicine 
queue 

8.76 7.62 8.08 19.14

At the in-person queue 14.48 8.58 8.11 5.38

• Parameter regime: Information     , information & priority    

• Crude equilibrium, refined equilibrium, system’s first best

• Average waiting time (days)

+5%↓



Summary
• Our Contribution

• A queueing-game model 

• Two operational levers

• Case study using real-world data

• Takeaway
• With the online triage tool, equilibrium under refined information may not 

outperform the equilibrium under crude information

• Proper priority rule can turn the information disadvantage into advantage

Thank you!
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