Helping the Captive Audience: Advance Notice of Diagnostic Service for Hospital Inpatients

Nan Liu

Carroll School of Management

Boston College

Rotman Roundtable on Healthcare Analytics 2024

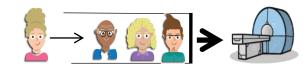
Joint Work with Miao Bai (University of Connecticut) & Zheng Zhang (Zhejiang University)

Hospital Diagnostic Service is Essential to Patient Care

- Canada expenditures
 - Total hospital expenditures exceed \$80 billion in 2022
 - Medical imaging alone accounts for 4.4%, i.e., \$3.52 billion, in 2022
 - Average annual growth rate in total hospital expenditures since 2005 is about 4% (Canadian Institute for Health Information, 2024)
- US expenditures
 - Medicare Part B expenditures on hospital imaging services reached \$3.53 billion in 2006 (U.S. GAO 2008).
 - 2006: 51.0 million CT scans and 14.6 million MRI scans in U.S. hospitals.
 - 2019: 71.3 million CT scans and 29.4 million MRI scans (OECD 2021).

Hospital Diagnostic Service Management

- Efforts in improving patient scheduling
 - Improving timeliness for outpatients (OPs) and emergency patients (EPs).
- However, hospital inpatients (IPs) may not be the focus of these efforts.


IP scheduling is a "pro forma scheduling" ... "with schedulers entering incorrect or imaginary appointments as placeholders" --- Efficient Radiology, Daniel Rosenthal and Oleg Pianykh (2021)

Current Practice

- IPs are scheduled arbitrary appointment times, but are not honored.
 - Service provider calls for IPs whenever she has time and the diagnostic equipment becomes available.
- IPs are perceived as always on standby and readily available.
 - IPs are "captive audience" (Rosenthal and Pianykh 2021).
- This approach "has little basis" *and* "creates numerous problems" (*Rosenthal and Pianykh 2021*).
 - Conflict with other IP care activities, or nursing/supporting staff availability.
 - May lead to distrust among these providers and patients.

Classic Scheduling Paradigms

• Allocation scheduling

- IPs <u>added to a waitlist</u> with no specific service time.
- IPs have to <u>stand by</u> until their services.

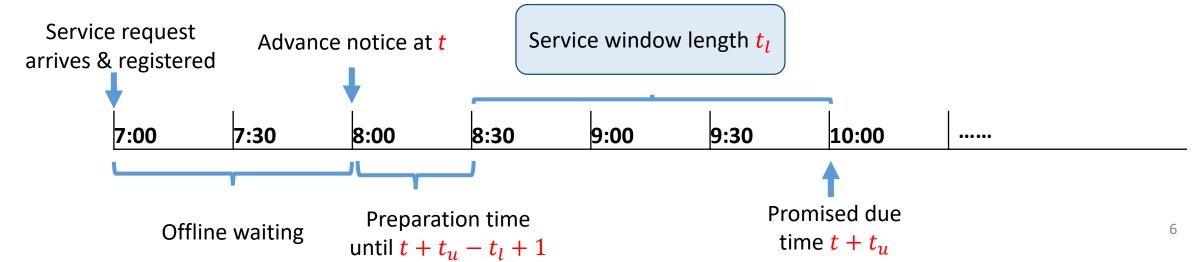
• Advance scheduling

- Patients are provided <u>specific service</u> <u>times</u>.
- Providers <u>must honor</u> scheduled times.

Can we achieve a better tradeoff?

• Gerchak et al. 1996, Huh et al. 2013, Wang and Truong 2017, Liu et al. 2019 ...

Min patient convenience Max provider flexibility



- Liu et al. 2010, Truong 2015, Samiedaluie et al. 2017, Wang et al. 2018, Diamant et al. 2018, Keyvanshokooh et al. 2021, Zacharias et al. 2022 ...
 - Max patient convenience Min provider flexibility

A New Scheduling Paradigm – Advance Notice

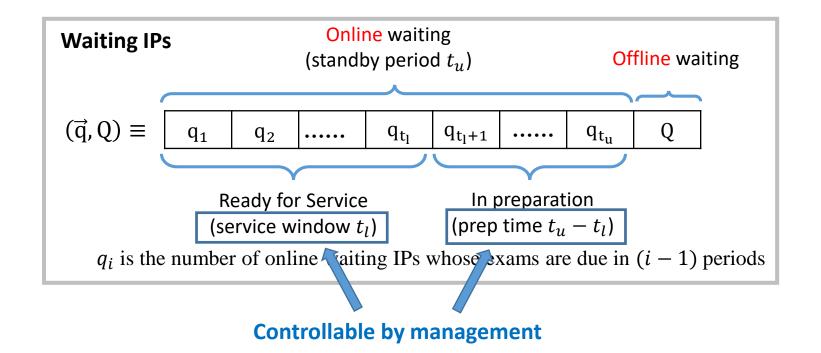
• We propose advance notice for IPs.

- Guarantee that IP exams are completed within t_u intervals after the notice
- Not starting their exams until $(t_u t_l + 1)$ intervals after the notice
- The length of service time window is t_l
- It reduces IP standby time (no last-minute notice) and also grants provider service flexibility (no specific service time).

Feedback from Practitioners on Advance Notice

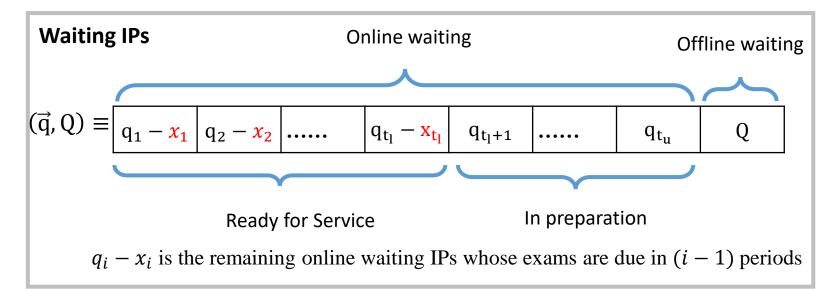
- Mayo Clinic is fairly positive because they tried something similar.
 - The radiology staff will leave a note to inpatient nurses in advance, notifying that they plan to pick up the inpatient for exams in the next 15 minutes to 1 hour.
- Dr. Daniel Rosenthal shared that they have also implemented "something somewhat similar" (at Mass General), but in a "less structured" way, by "[providing] the inpatient floors with information about the usual time that a call should be expected".
 - Dr. Rosenthal is Senior Vice Chairman, Department of Radiology & Professor of Radiology, Harvard Medical School. He coauthored the book "Efficient Radiology: How to Optimize Radiology Operations".
- Largely based on staff experience and intuition, without scientific or data support.

(Brief) Literature Review

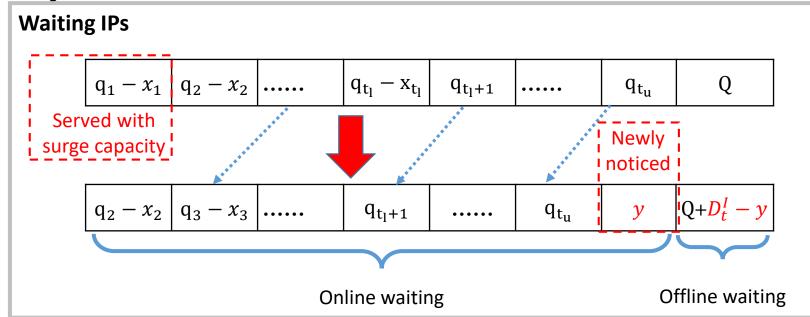

- Dynamic scheduling
 - Advance scheduling: *Patrick et al. 2008, Liu et al. 2010, Truong 2015, Diamant et al. 2018, Keyvanshokooh et al. 2021, Zacharias et al. 2022, Chambers et al. 2023*
 - Allocation scheduling: *Gerchak et al. 1996, Huh et al. 2013, Wang and Truong 2017, Liu et al. 2019*
- Diagnostic service management
 - Follow either the advance or allocation scheduling frameworks: *Green et al.* 2006, *Kolisch and Sickinger 2008*, *Patrick and Puterman 2007*, *Saure et al. 2020*
- Other OM literature
 - Dynamic inventory control for perishable product: *Nahmias 1975, Chen et al. 2014, Li and Yu 2014, Li et al. 2016, Sarhangian et al. 2018*
 - Curbside pickup: Cavdar and Isik 2020, Farahani et al. 2020

Problem Formulation as an MDP

- Diagnostic service
 - Operate M servers within a time horizon of T periods
 - Each server can serve one patient in a period.
- Stochastic demand from OPs, IPs, and EPs at each interval
 - OPs random: scheduled ahead but with uncertainty in arrival time and duration of check-in and preparation procedures
 - IPs and EPs random: random arrivals
- Priorities
 - EPs and OPs served in the same interval as they arrive, but IPs can wait. (*Kolisch and Sickinger 2008, Green et al. 2006*)


As Each Interval Starts, the Provider Observes:

- Offline waiting IPs (Q) who have not received advance notice
- Online waiting IPs (\vec{q}) who have received advance notice

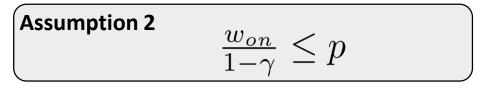

First Decision \vec{x} : Who to Serve

- New demands from OPs (D_t^O) and EPs (D_t^E) realized and served
- Use the remaining capacity to serve online waiting IPs
 - Remaining capacity $S_t \equiv (M D_t^O D_t^E)^+$
 - IP exams $\vec{x} \equiv (x_1, x_2, ..., x_{t_l}), x_i \le q_i, i = 1, 2, ..., t_l; \sum_{i=1}^{t_l} x_i \le S_t$

Second Decision **y**: How Many Advance Notices to Send

- The remaining IP exams due in the current period $(q_1 x_1)$, if any, are served by using surge capacity
- Observe D_t^I new IP requests
- At the end of the period, send out y advance notices to offline waiting IPs $(y \le Q + D_t^I)$

Cost Structure, Objective, and Formulation

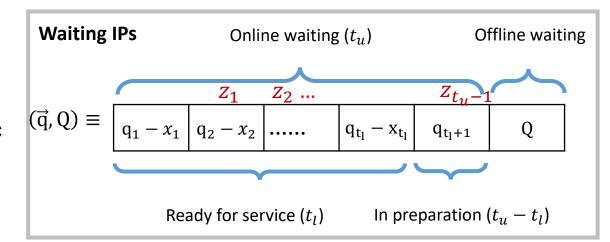

- Maximize the total discounted "rewards" of serving IPs
 - Revenue (*r*) of serving each IP
 - Cost (w_{on}) of online IP waiting per interval
 - Cost (w_{off}) of offline IP waiting per interval
 - Cost (*p*) of using surge capacity to serve each "overdue" IP and to serve remaining IPs at the end of the horizon
- The problem can be formulated as a Markov Decision Process model
 - First decision: who to serve, i.e., \vec{x}
 - Second decision: how many advance notices to send, i.e., *y*

Structural Results - Service Strategy \vec{x}

• Cost of online waiting > offline waiting

Assumption 1 $w_{on} > w_{off} \ge 0.$

• Service provider does not use surge capacity unless it is absolutely necessary.


Optimality of the FCFS service strategy

The optimal service strategy is to serve online waiting IPs on a FCFS basis, i.e., use up all available capacity and serve those with most imminent promised due time first.

Structural Results - Advance Notice y

- Structural analysis on advance notice decisions
 - Via a simple and yet novel variable transformation
 - Reveal the hidden *antimultimodular* structure of the problem

Monotonicity and Bounded Sensitivity of y^*

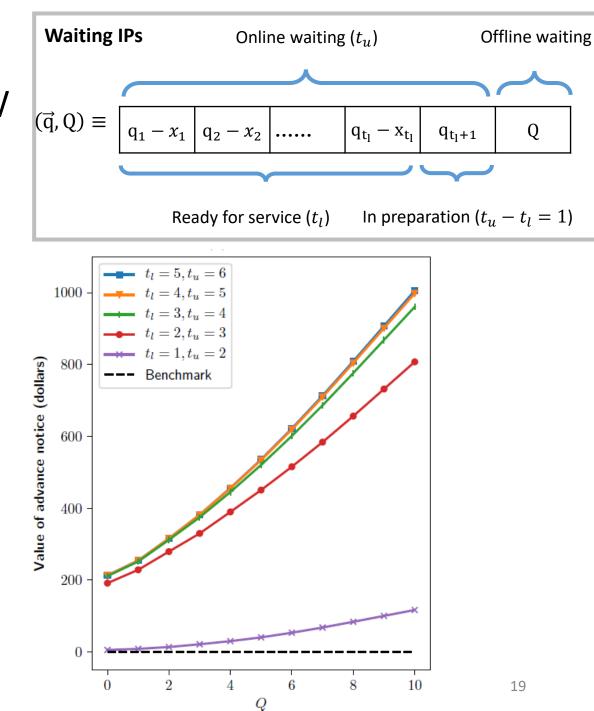
 \Box The optimal number of advance notices (y^*)

- y^* increases as offline waiting IPs (Q) increase
- y^* decreases as online waiting IPs (z_i) increase
- Online waiting IPs who have imminent promised due time (*smaller i*) have smaller impacts on y*

Bounded sensitivity

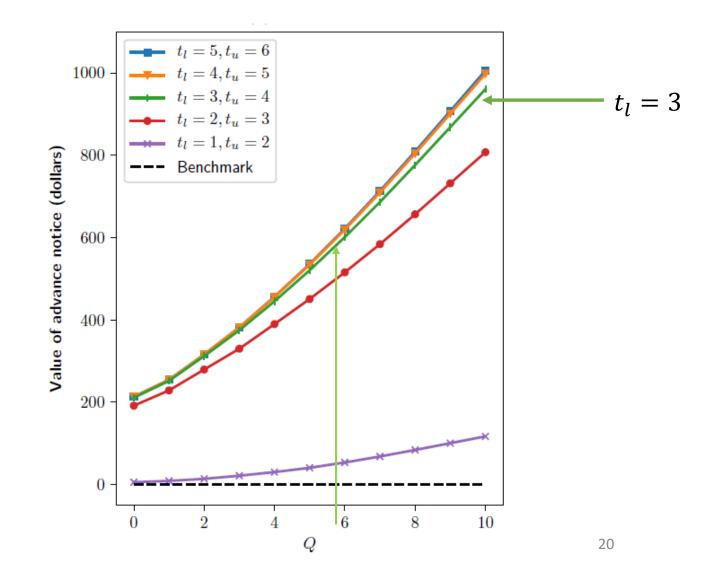
- If Q or z_i changes by 1, y^* changes no more than 1
- we only need to check two possible neighboring solutions around a known solution → efficient solutions!

Case Study

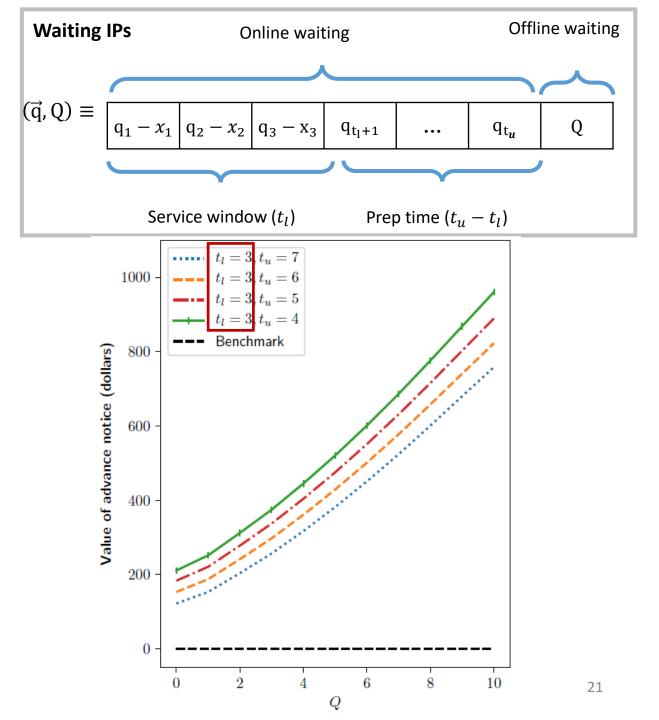

- 9-month data from a computed tomography (CT) practice in Mayo Clinic
 - Operates M=4 scanners and serves IPs, OPs and EPs.
 - Day shift consists of T=18 service intervals (each 30 minutes based on median exam duration)
 - We derive empirical demand distribution based on historical data (non-stationary arrivals)
- Cost parameters based on empirical studies in literature (Sistrom and McKay 2005, Liu et al. 2018, Hathaway et al. 2021)
 - Revenue per patient r = \$416
 - Cost of surge capacity usage p =\$76.5
 - Cost of online waiting per interval $w_{on} = 3.18
 - Cost of offline waiting per interval $w_{off} =$ \$0.57

Value of Advance Notice

- In benchmark model, we set $t_l = 1$, $t_u=2$, and treat all waiting as online waiting.
 - Everyone is standing by, send notice 1 period ahead, and allow 1 period transportation time
 - Likely provides a performance upper bound of current practice.
- In our advance notice model, we set the prep time, i.e., $t_u t_l$, as one period (i.e., 30 mins) based historical data.
- Compare the cumulative rewards for different starting Q's, while fixing q = 0.
 - There may be physician orders sent over night.


Impact of Service Window t_l

- As *t_l* increases, benefits turn more significant.
 - More service flexibility for provider with larger t_l .
 - Provable result.
- Marginal benefit of increasing t_l is diminishing.
 - Larger *t_l* requires longer IP standby.
 - Enables providers to use a small t_l to achieve good improvement.


How much improvement?

- With a little flexibility in service time window (e.g., t_l = 3 or equivalently 1.5 hours), the financial improvement can be \$211-961 per day or equivalently \$55,000-\$250,000 per year for *M*=4 scanners.
- With $Q = 5 \sim 6$, annual cost savings amount to \$135,000-\$156,000.
- The annual total expected discounted reward under the current benchmark policy amounts to \$1.05M-\$1.12M.
- Improvement @ 13-14%.

Impact of Prep Time $t_u - t_l$

- Fixing the service window t_l , the value function drops as lead time $t_u - t_l$ increases.
 - Neither patients or providers benefit from long notice.
 - Should not rush to send advance notice.
 - Reducing lead time (e.g., transport time) can be an improvement lever.

Takeaways

- We propose a new scheduling paradigm: *advance notice*.
 - Strike a fine balance between advance and allocation scheduling.
- Formulate an MDP model and derive structural properties.
 - Reveal its hidden antimultimodular structure via variable transformations.
 - Prove the monotonicity and bounded sensitivity of optimal decisions.
- Demonstrate significant values of advance notice in a Mayo Clinic case.
 - A little flexibility (in the service window) can go a long way.
 - Reduce prep time is a useful improvement lever.
- Advance notice offers a promising approach to improving general appointmentbased services, e.g., maintenance, tech support, and online delivery.

Working paper available @

Thank you! Q & A <u>nan.liu@bc.edu</u>