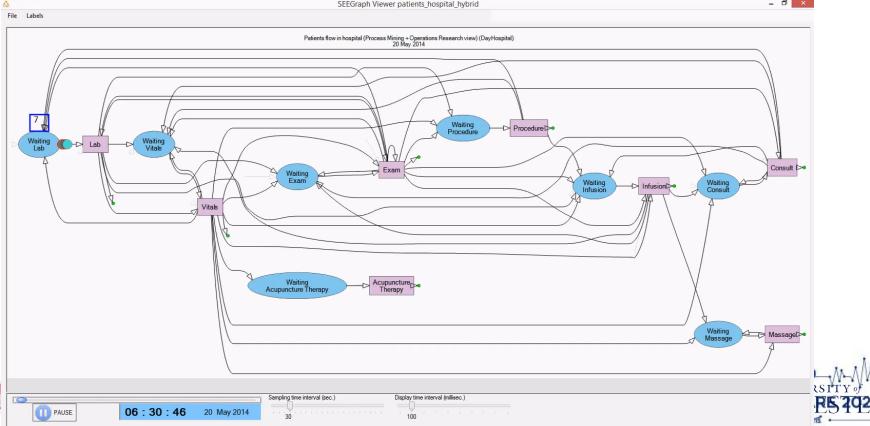
Physician Rostering with Downstream Capacity Constraints

Arik Senderovich

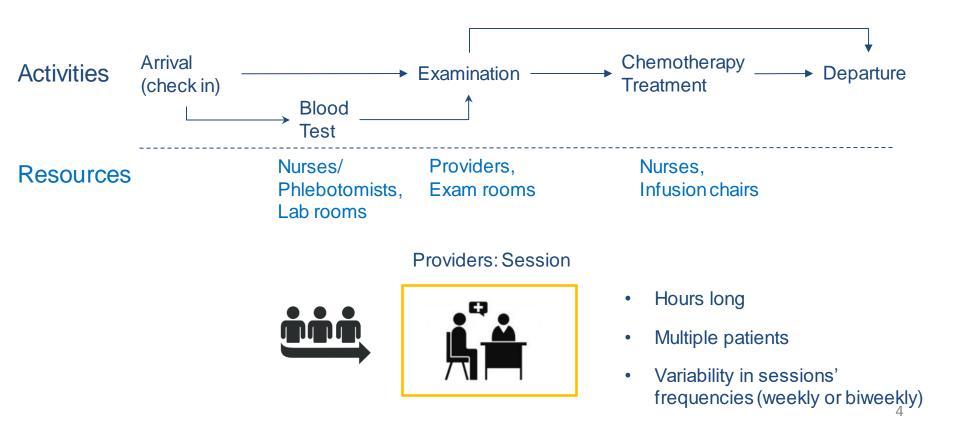
School of Information Technology, York University Rotman School of Management, University of Toronto

Yashi Huang, Yaron Shaposhnik Simon Business School, University of Rochester


May 8, 2024

Motivation

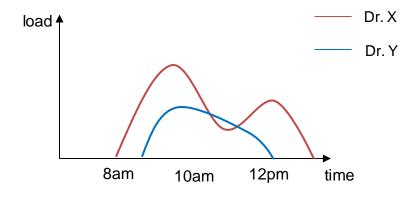
- Collaboration with Dana-Farber Cancer Institute (DFCI)
- Large: ~1000 outpatients per day, two centers
- Diversity in physicians' specializations e.g., kidney cancer, liver cancer
- Different types of appointments (consultations, exams, chemotherapy)
- RTLS sensors at both sites; 10 years of data
- Providers are rostered to long-term running "exam sessions" (slots of time; usually cyclic)


SEENimation of the DFCI process

SEEGraph Viewer patients hospital hybrid

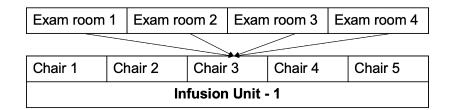
- 🗇 🗙

The Patient Flow


Impact of Exam on Infusion

- Sessions have impact on downstream infusion load (number of chairs)
- Sessions held by different providers impact differently

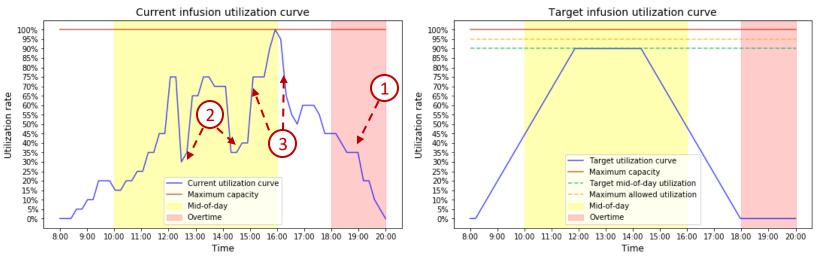
Dr. X and Dr. Y's session time


8:00am-9:00am	9:00am-10:00am	11:00am-12:00pm
Dr	-	
Dr	-	

Infusion load for Dr. X and Dr. Y's sessions

Problem Setting

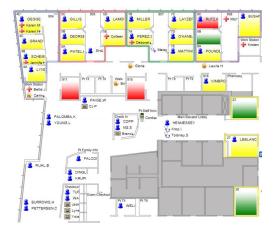
Multiple sessions at the same time

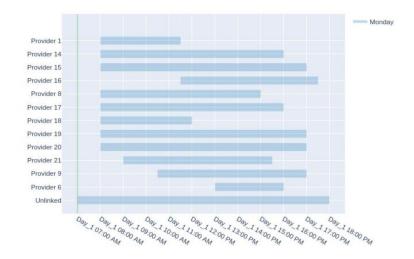

- Total infusion load can vary for different combinations of sessions
- **Research question**: How to <u>roster</u> provider sessions?
 - balance resource utilization (infusion chairs)
 - subject to downstream capacity constraints
 - make as few changes to existing roster as possible

Outline

- Introduction
- **Problem Description**
- Numerical Experiment
- User Interface
- Takeaways and future steps

Objectives


- 1. Total overtime;
- 2. Distance from an ideal mid-of-day target infusion utilization curve;
- 3. Fluctuations of the infusion curve.



Current vs. target infusion utilization curve over one day

Constraints

- Downstream capacity constraint number of infusion chairs
- Exam room capacity constraint
- Provider availability
- Number of changes allowed (in terms of provider)

Physician Rostering with Downstream Capacity Constraints (PRDCC)

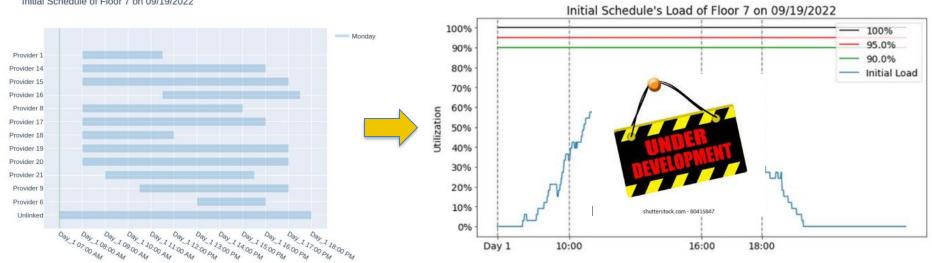
$\min pe^{at} \cdot \sum_{t \in \mathcal{T} \setminus \mathcal{T}'} (l - LastRegSlot(t)) \sum_{\rho \in [R]} Q_{t,\rho} + pe^{tar} \cdot \sum_{t \in \mathcal{T}'^{mid}} \sum_{\rho \in [R]} U_{t,\rho} + \sum_{t \in \mathcal{T}} \sum_{\rho \in [R]} D_{t,\rho}$	(1)
s.t.	
$A_{\sigma,t} = A^0_{\sigma,t}, \forall \sigma \in \mathcal{S}: p_\sigma \in \mathcal{P}^F$	(2)
$B_{\sigma,t} = B^0_{\sigma,t}, \forall \sigma \in \mathcal{S} : p_\sigma \in \mathcal{P}^F$	(3)
$\sum_{t \in T} B_{\sigma, t} = 1, \forall \sigma \in \mathcal{S}$	(4)
$B_{\sigma,t} = 0, \forall t \in \mathcal{T} \setminus \mathcal{T}^{\text{start}}, \sigma \in \mathcal{S}$	(5)
$\sum_{t \in T} A_{\sigma, t} = l_{\sigma}, \forall \sigma \in \mathcal{S}$	(6)
$B_{\sigma,t} \leq A_{\sigma,t+\tau}, \forall \sigma \in S, l \in T, \tau \in \{0 \leq \tau \leq l_{\sigma} - 1\}$	(7)
$A_{\sigma,t} = 0, \forall \sigma \in \mathcal{S}, t \in \mathcal{T}^{day.ends}$	(8)
$\sum_{\sigma: p_{n}=p} A_{\sigma,t} \leq 1, \forall p \in \mathcal{P}, l \in \mathcal{T}$	(9)
$A_{\sigma,t} - \sum_{\sigma': \sigma : (\sigma) = t} A_{\sigma',t} \leq 1 - I_{p_i, p_j}^{attn}, \forall \sigma \in \mathcal{S} : p_{\sigma} = p_i, \ p_i, p_j \in \mathcal{P}, t \in \mathcal{T}$	(10)
$M_p \ge B_{\sigma,t} - B_{\sigma,t}^0, \forall \sigma \in \mathcal{S} : p_\sigma \in \mathcal{P}^A, t \in \mathcal{T}$	(11)
$\sum_{n \in \mathcal{P}^A} M_p \le M$	(12)
$\sum_{\substack{a \in S \\ a \in S}} A_{\sigma,t} \leq C_t^{\text{exam}}, \forall t \in \mathcal{T}$	(13)
$Q_{t,\rho} = \sum_{\sigma \in S} \sum_{n \in Z: Day(t-n) = Day(t)} B_{\sigma,t-n} \cdot W_{\sigma,n\cdot R+\rho}, \forall \rho \in [R], t \in \mathcal{T}$	(14)
$Q_{t,\rho} \leq u^{max} \cdot C_t^{infusion}, \forall \rho \in [R], t \in \mathcal{T}$	(15)
$D_{t,\rho} \ge Q_{t,\rho} - Q_{t,\rho-1}, \forall \rho \ge 2, \rho \in [R], t \in \mathcal{T}$	(16)
$D_{t,\rho} \geq -Q_{t,\rho} + Q_{t,\rho-1}, \forall \rho \geq 2, \rho \in [R], t \in \mathcal{T}$	(17)
$D_{t,1} \geq Q_{t,1} - Q_{t-1,R}, \forall t \in \mathcal{T}: Day(t) = Day(t-1)$	(18)
$D_{t,1} \geq -Q_{t,1} + Q_{t-1,R}, \forall t \in \mathcal{T}: Day(t) = Day(t-1)$	(19)
$D_{t,1} = 0, \forall t \in \mathcal{T} : Day(t) \neq Day(t-1)$	(20)
$U_{t,\rho} \ge Q_{t,\rho} - u^{tar} \cdot C_t^{infusion}, \forall \rho \in [R], t \in \mathcal{T}$	(21)
$U_{t,\rho} \geq -Q_{t,\rho} + u^{tar} \cdot C_t^{infusion}, \forall \rho \in [R], t \in \mathcal{T}$	(22)
$A_{\sigma,t}, B_{\sigma,t}, M_p \in \{0,1\}$	(20)

Details in the paper

PRDCC - Complexity

Lemma 1 The PRDCC problem is NP-hard.

Proof: We begin by defining NPP. Subsequently, we construct an instance of the PRDCC problem, and then we demonstrate its reduction from NPP.

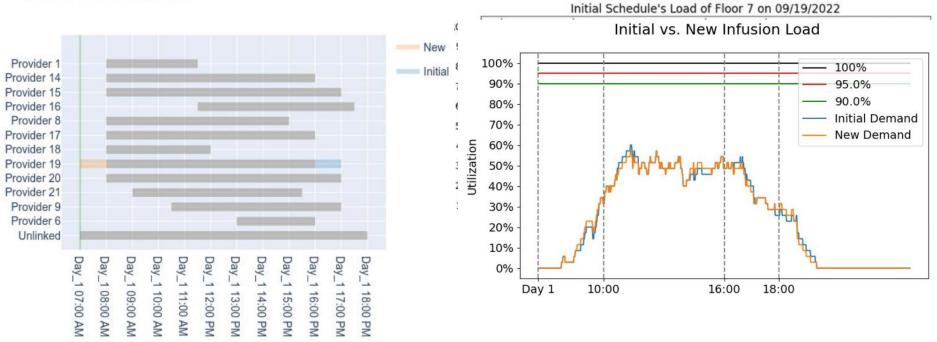

Definition 1 (Number Partition Problem) (Mertens 2006) Given a list of positive integer numbers $w_1^{NPP}, w_2^{NPP}, ..., w_N^{NPP}$, find a partition, i.e., a subset $S_1^{NPP} \subset [N^{NPP}]$ such that the discrepancy

$$D^{NPP}(\mathcal{S}_1^{NPP}) = |\sum_{i \in \mathcal{S}_1^{NPP}} w_i^{NPP} - \sum_{i \notin \mathcal{S}_1^{NPP}} w_i^{NPP}|,$$

is minimized. A partition with $D^{NPP} = 0$ ($D^{NPP} = 1$) for $\sum w_j^{NPP}$ even (odd) is called **perfect** partition.

- Complexity: total number of sessions & number of time slots
- In practice, MILP provides fast solutions to DFCI-size problems with one-month horizon

Predictive model for infusion load

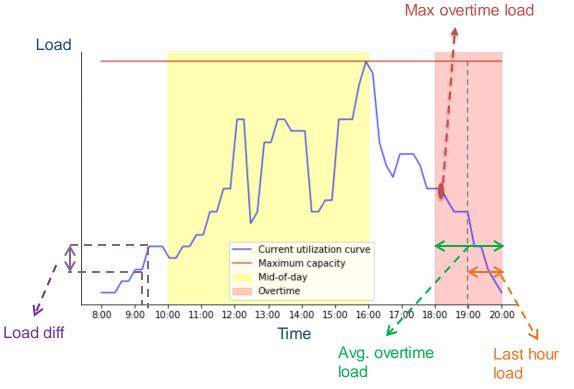


Initial Schedule of Floor 7 on 09/19/2022

Problem Description

• Optimization model - imptput

Initial and New Schedule



Outline

- Introduction
- Problem Description
- Numerical Experiment
- User Interface
- Takeaways and future steps

Performance Measures

- Overtimes
 - Average overtime load (average load during 18:00 -20:00)
 - Max overtime load (peak load during 18:00 - 20:00)
 - Last hour load (average load during 19:00 - 20:00)
- Fluctuations
 - Average of 10-min load difference

Counterfactual Experiment

- DFCI Session data + "Action log"
 - September-December 2022 (18 weeks sample)
 - One-week planning horizon, per floor
- Infusion load (as function of exams) remains the same (no prediction)- only start-time shifts
- Change in rostering due to PRDCC OPT

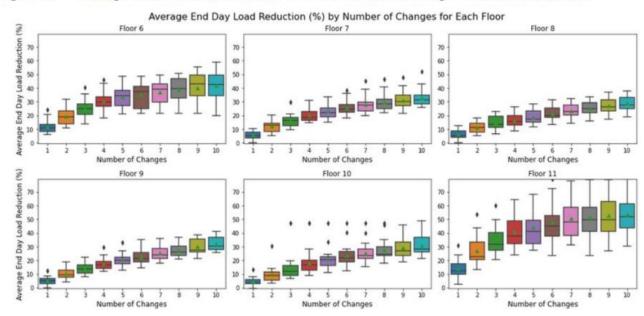
Table 1A statistical table of the current infusion load measures by infusion unit.

	Num_sessions	Max C	vertin	ie Load	I	Averag	ge Ove	rtime I	Load	Last H	lour Lo	oad		Daily	Fluctu	ation (1	0 min)
	mean	mean	\min	50%	\max	mean	min	50%	max	mean	\min	50%	\max	mean	min	50%	max
Unit																	
6	60.76	9.06	5.0	9.0	13.0	2.67	1.27	2.57	4.27	1.11	0.45	1.01	2.33	0.58	0.50	0.59	0.65
7	65.47	17.00	11.0	18.0	25.0	5.74	3.28	5.08	12.38	2.52	0.94	2.26	6.52	0.98	0.87	0.98	1.13
8	87.81	17.12	12.0	17.0	22.0	6.97	5.00	7.17	9.98	3.68	1.98	3.49	5.94	0.94	0.88	0.94	1.05
9	78.78	14.78	12.0	14.0	20.0	5.84	3.73	5.91	11.38	2.74	1.68	2.44	7.34	0.90	0.80	0.89	1.04
10	66.56	17.94	6.0	18.0	24.0	6.31	2.88	6.04	9.46	2.79	1.55	2.24	5.00	0.90	0.62	0.92	1.01
11	43.53	7.12	3.0	7.0	11.0	2.05	0.63	1.87	4.20	0.78	0.12	0.71	1.95	0.50	0.45	0.48	0.61

Results

• Performance by number of changes allowed

Cl	Max C mean	vertime min	$\begin{array}{c} { m Load} \\ 50\% \end{array}$	max	Averag mean	ge Overt min	ime Loa 50%	ad max	Last H mean	lour Loa min	ıd 50%	$_{ m max}$	ı v	Fluctua min	tion (1 50%	0 min) max
Changes																
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 9 \end{array} $	$1.86 \\ 4.68 \\ 7.46 \\ 10.44 \\ 10.40 \\ 11.49 \\ 15.14 \\ 15.10 \\ 15.79$	-20.00 -30.00 -25.00 -33.33 -40.00 -25.00 -20.00 -33.33 -33.33	$\begin{array}{c} 0.00 \\ 4.17 \\ 7.14 \\ 11.11 \\ 11.56 \\ 10.00 \\ 14.29 \\ 14.29 \\ 14.29 \\ 14.29 \end{array}$	$\begin{array}{c} 28.57\\ 42.86\\ 42.86\\ 45.45\\ 50.00\\ 57.14\\ 71.43\\ 71.43\\ 71.43\end{array}$	$\begin{array}{c} 7.93 \\ 14.92 \\ 19.87 \\ 24.04 \\ 26.91 \\ 29.37 \\ 31.59 \\ 33.26 \\ 34.96 \end{array}$	$\begin{array}{r} -0.43\\ 3.15\\ 6.48\\ 8.73\\ 10.96\\ 12.31\\ 14.21\\ 16.03\\ 17.06\end{array}$	$\begin{array}{c} 7.05\\ 13.11\\ 17.21\\ 20.15\\ 23.62\\ 25.40\\ 27.93\\ 29.22\\ 31.81\end{array}$	30.98 53.42 59.83 64.28 68.06 79.29 78.16 78.79 78.79	$ \begin{vmatrix} 17.70 \\ 31.33 \\ 40.52 \\ 46.58 \\ 51.42 \\ 55.33 \\ 58.42 \\ 60.53 \\ 62.19 \end{vmatrix} $	$\begin{array}{c} 0.00\\ 4.12\\ 11.24\\ 16.31\\ 19.76\\ 24.08\\ 25.10\\ 25.22\\ 29.02 \end{array}$	$14.26 \\ 25.70 \\ 34.18 \\ 40.29 \\ 46.60 \\ 51.12 \\ 53.60 \\ 57.05 \\ 59.17 \\$	$ \begin{array}{c} 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ 100.0\\ \end{array} $	$\begin{array}{c} 0.78 \\ 1.66 \\ 2.45 \\ 3.13 \\ 3.76 \\ 4.35 \\ 4.99 \\ 5.82 \\ 6.39 \end{array}$	-2.81 -4.03 -4.06 -3.19 -1.57 -2.39 -3.72 -2.62 -2.26	$\begin{array}{c} 0.49 \\ 1.19 \\ 1.88 \\ 2.63 \\ 3.13 \\ 3.52 \\ 4.20 \\ 4.62 \\ 5.51 \end{array}$	$\begin{array}{c} 6.17\\ 8.59\\ 11.09\\ 14.86\\ 16.00\\ 15.89\\ 17.71\\ 17.01\\ 20.80\end{array}$
10	17.64	-21.43	15.38	71.43	36.73	18.96	33.62	79.33	63.46	32.78	60.16	100.0	7.15	-6.34	6.55	21.14


Table 2 A table of statistics of load improvements (%) by number of changes.

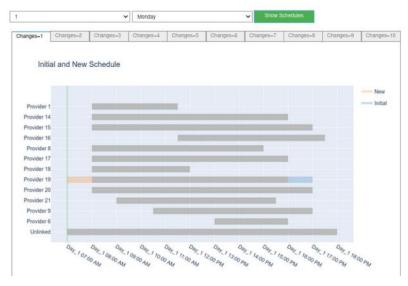
Objective (future work to test sensitivity to params):

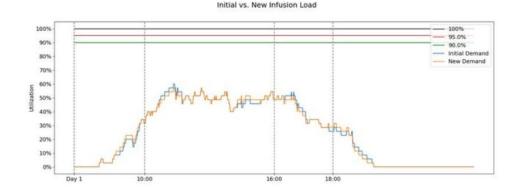
$$10 * \sum_{t \in T} |D_t - D_{t-1}| + 20 * \sum_{t \in T^{mid}} |D_t - 0.9 * Capacity| + 50 * \sum_{t \in T^{end}} t * D_t$$

17

More (Graphical) Results

Figure 13 Average Overtime Load reduction % versus number of changes for each infusion unit.


Outline


- Introduction
- Problem Description
- Numerical Experiment
- User Interface
- Takeaways and future steps

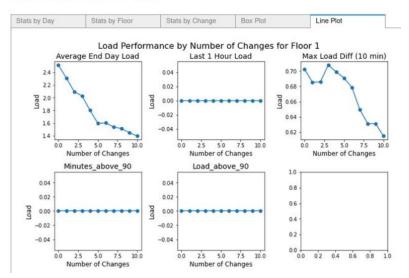
User Interface

A user interface (UI) to review and analyze the optimized rosters.
 – roster visualization

Show Schedule of:

User Interface

- A user interface (UI) to review and analyze the optimized rosters.
 - performance metrics display
 - statistics table


Performance Stats Table

tats by Day	y Stats by Floor Average End Day Load Reduction			or	Stats by Change				Box Plot			Line Plot								
				Last 1 Reduct		oad		Max Load Diff (10 min) Reduction			Minutes_above Reduction			e_90			Load_above_90 Reduction			
	mean	min	50%	max	mean	min	50%	max	mean	nean min	50%	max	mean	min	50%	max	mean	min	50%	max
Date																				
Monday	0.78	0.00	0.83	1.12	0.0	0.0	0.0	0.0	0.02	-0.04	0.03	0.09	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tuesday	0.79	0.25	0.93	1.16	0.0	0.0	0.0	0.0	0.05	0.00	0.03	0.11	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

User Interface

- A user interface (UI) to review and analyze the optimized rosters.
 - performance metrics display
 - plots

Performance Stats Table

Outline

- Introduction
- Problem Description
- Numerical Experiment
- User Interface
- Takeaways and future steps

Takeaways

- Formulated an optimization model to solve rostering problem with downstream capacity constraints and proved its complexity
- Developing a predictive model to estimate the infusion load.
- Designed a user interface to present outcomes.

Future Steps

- Predictive experiment (out-of-sample) using real DFCI data for training and testing
- Providing a heuristic that would quickly solve PRDCC (for large instances and longer time horizons)
- Integrate predictions into the UI and run a pilot at DFCI

Thank you! sariks@yorku.ca