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“I could calculate your chances of survival — but

you won’t like it”

-- Marvin from ‘The Hitchhiker’s Guide to the Galaxy’
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Out-of-hospital cardiac arrest (OHCA)

Kills 400,000 people in North America annually

Only 5-10% of patients survive to hospital discharge

e Survival is very time-sensitive
— Survival odds fall up to 10% per minute

* Prompt CPR and defibrillation can improve survival
substantially

— Thus, focus on getting treatment to OHCA victims quickly
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Automated external defibrillator (AED)

e A defibrillator can deliver an electric shock to “reset”
the heart

* Easy to use —just follow audio/visual instructions
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Defibrillator drone
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Drone delivery of medical supplies

The ambulance drone that could save
your life: Flying defibrillator can reach

speeds of 60mph
+ $19,000 drone tracks emergency mobile calls and used Drones will begin delivering blood and medicine in the

+ Operators can watch, talk and instruct those helping th| US
board camera

After launching in Rwanda, Zipline brings its fleet of medical drones to three US states

| First FAA-approved drone delivery brings medical
supplies to rural Virginia

Jayne O'Donnell and Laura Ungar , USA TODAY  Published 12:35 p.m. ET July 17, 2015 | Updad UPS Tes‘[s Drone Delivery Of Medica[
Supplies
Swiss hospitals will start using drones to exchange £ v B

lab samples
It's the first time drones will be used commercially for this purpose in an urban area

by James Vincent | @ivincen | Mar 31, 2017, 6:00am EOT Peel and drone company launch research into airborne
delivery of emergency medical aid

Defibrillators carried to patients by drones envisioned
EENE] Jun 29,2017 by Roger Belgrave &% Brampton Guardian
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Today’s talk

Network Dicoatch Pilot
design P testing
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Project 1: Network design

 Modeling framework to design drone network to
meet any AED arrival time goal

* Optimization model to determine number and
location of drone bases

e Queuing model to determine number of drones to
locate at each base to meet certain service level

* Ongoing work that aims to integrate these two
models
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Comparing response timelines
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Data

* 8regions
— 7.5 million people
— 10,000 sg. miles

Muskoka

e 53,702 OHCAs from
2006 to 2014

— 86% private location

i F s
Durham

— 7.8% survival

. Halton
B
b
R

Legend

o Paramedic, fire, and police stations

Hamrlton:

538 paramedic, fire,
and police stations

e Historical cardiac arrests

o A 25 50 75 100 km




Applied Optimization Lab, University of Toronto

Results: an example drone network

e 23 bases, 37 drones:

— Reduce median response e 1 drone per base
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Impact on response time distribution
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Project 2: Dispatch

e Should we send a drone to each OHCA?
— Only useful if it arrives before EMS

* Over-dispatching has drawbacks
— Cost
— Risk of adverse events
— Unavailability for subsequent missions

* Goal: Develop dispatch rules based on predicted EMS
response times
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Problem setting

* Peel Region, Ontario
— 3 municipalities, 1.4 million people

e Suspected OHCAs from Jan. 2015 — Dec. 2019
— After applying inclusion/exclusion criteria, n = 3,573

* Base locations determined using optimization model
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Methodology

* Predicted ambulance response time using:

— Linear Regression
— Neural network

— Inputs: day/time variables, locations of ambulance and
OHCA, road distance

e Dispatch drone if:

Drone response time < ambulance response time + 6
(6 = buffer)
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Evaluation metrics

* Evaluate dispatch rules by mean, median, and 90t"
percentile of:

first response time = min(drone, ambulance)

e Correctness of dispatch decision:

Outcome

Drone would have Drone would have
arrived before EMS arrived after EMS

True False
£ c
o o Send Drone Positive Positive
o n
% o
o) 8 Don’t Send False True
Drone Negative Negative



Applied Optimization Lab, University of Toronto

. AppliedOptimization Lab, University of Toronto
Results: Response times

* All dispatch rules
significantly reduce
response time compared
to historical EMS

— Mean: 6.2 2 4.1-4.2 min
— Median: 5.8 2 3.9 min
— 90t pct: 9.5 2 6.5-6.7 min

 Comparable response
time distribution to
“universal dispatch”

Number of suspected OHCAs

Response time (minutes)
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Results: Sensitivity vs. Specificity

e Suspected OHCAs with

improved first response I‘ L, o
time plateaus at “65% . -

— Reaches a maximum number 7 = W e
of “beneficial” drone trips & -
* ML-based dispatch rules g
reduce the number of trips ~ § .| ‘ o

by 10-30% compared to

o . | d . h” 200 ™ Mo Dropfsieqrf:';
universal dispatc
0—15 —3.0 —I5 0 5 ].'0 1‘5 2‘0 25

Drone response time minus ambulance response time (minutes)

18



Applied Optimization Lab, University of Toronto

Project 3: Feasibility study

Peel Region ponders adding drone-mounted,
talking defibrillators to its EMS fleet

f (v = (& in
Research shows drones can cut down response times 6 minutes in urban centres and

10 minutes in rural centres

Michael Smee - CBC News - Posted: Mar 28, 2019 5:00 AM ET | Last Updated: March 28

| Peel pilot project tests drone delivery of
defibrillators to help cardiac arrest victims

By Marta Marychuk Mississauga News
Tues., April 2, 2019 | &2 min. read
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Test flights (summer 2020)
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Progress and next steps

e Completed large number of flights

e Successful AED drops, faster response to mock
OHCAs, night flights, temperature

* Phone attached to AED provides real-time training
and feedback to bystander

* Next steps:
— Flights without “spotter” at destination
— Simultaneous dispatch with EMS
— Go live with municipal and Transport Canada approval

— Extensions to broader medical response (e.g., EpiPen,
naloxone, glucose, trauma sling, etc.)
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e Exciting interdisciplinary collaboration that has
moved a “theoretical” idea to reality in a short time

* OR and analytics have an important role to play in
designing a drone response system and integrating it
within the broader EMS landscape
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Collaborators

e Justin Boutilier * Shelley McLeod

e Steven Brooks * Michael Nolan

e Alyf Janmohamed * Paul Snobelen
 Adam Byers e Christian Vaillancourt
e Jason Buick e Katie Dainty

e Cathy Zhan * lan Drennan

* Angela Schoellig e Jamal Chu

e Sheldon Cheskes * Benjamin Leung

e Laurie Morrison e Gordon Nevils
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Thanks for listening!

Questions?

Timothy Chan

University of Toronto
tcychan@mie.utoronto.ca
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