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“I could calculate your chances of survival – but 
you won’t like it”

-- Marvin from ‘The Hitchhiker’s Guide to the Galaxy’
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Out-of-hospital cardiac arrest (OHCA)

• Kills 400,000 people in North America annually

• Only 5-10% of patients survive to hospital discharge

• Survival is very time-sensitive

– Survival odds fall up to 10% per minute

• Prompt CPR and defibrillation can improve survival 
substantially

– Thus, focus on getting treatment to OHCA victims quickly
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Automated external defibrillator (AED)

• A defibrillator can deliver an electric shock to “reset” 
the heart

• Easy to use – just follow audio/visual instructions
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Defibrillator drone
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Drone delivery of medical supplies
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Today’s talk

Network 
design

Dispatch
Pilot 

testing
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Project 1: Network design

• Modeling framework to design drone network to 
meet any AED arrival time goal

• Optimization model to determine number and 
location of drone bases

• Queuing model to determine number of drones to 
locate at each base to meet certain service level

• Ongoing work that aims to integrate these two 
models
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Comparing response timelines
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Data

• 8 regions

– 7.5 million people

– 10,000 sq. miles

• 53,702 OHCAs from 
2006 to 2014

– 86% private location

– 7.8% survival

• 538 paramedic, fire, 
and police stations
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Results: an example drone network

• 23 bases, 37 drones:

– Reduce median response 
time by 1 minute

– Reduce 90th percentile 
response time by over 6 min 
in some regions

– 2/3 of the time drone arrives 
ahead of EMS

1 drone per base

2 drones per base
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Impact on response time distribution

6 min 43s 10 min 34s

Toronto (Urban) Muskoka (Rural)

1 min 1 min

2 min

3 min

2 min

3 min
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Project 2: Dispatch

• Should we send a drone to each OHCA?

– Only useful if it arrives before EMS

• Over-dispatching has drawbacks

– Cost

– Risk of adverse events

– Unavailability for subsequent missions

• Goal: Develop dispatch rules based on predicted EMS 
response times

13



Applied Optimization Lab, University of Toronto

Problem setting

• Peel Region, Ontario

– 3 municipalities, 1.4 million people

• Suspected OHCAs from Jan. 2015 – Dec. 2019

– After applying inclusion/exclusion criteria, n = 3,573

• Base locations determined using optimization model
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Methodology

• Predicted ambulance response time using:

– Linear Regression

– Neural network

– Inputs: day/time variables, locations of ambulance and 
OHCA, road distance

• Dispatch drone if:

Drone response time < ambulance response time + δ
(δ = buffer)
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Evaluation metrics

• Evaluate dispatch rules by mean, median, and 90th

percentile of: 

first response time = min(drone, ambulance)

• Correctness of dispatch decision: 
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Results: Response times

• All dispatch rules 
significantly reduce 
response time compared 
to historical EMS 

– Mean: 6.2 → 4.1-4.2 min

– Median: 5.8 → 3.9 min

– 90th pct: 9.5 → 6.5-6.7 min

• Comparable response 
time distribution to 
“universal dispatch”
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Results: Sensitivity vs. Specificity

• Suspected OHCAs with 
improved first response 
time plateaus at ~65%

– Reaches a maximum number 
of “beneficial” drone trips

• ML-based dispatch rules 
reduce the number of trips 
by 10-30% compared to 
“universal dispatch”
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Project 3: Feasibility study
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Test flights (summer 2020)
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Progress and next steps

• Completed large number of flights

• Successful AED drops, faster response to mock 
OHCAs, night flights, temperature

• Phone attached to AED provides real-time training 
and feedback to bystander

• Next steps:

– Flights without “spotter” at destination

– Simultaneous dispatch with EMS

– Go live with municipal and Transport Canada approval

– Extensions to broader medical response (e.g., EpiPen, 
naloxone, glucose, trauma sling, etc.)
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Summary

• Exciting interdisciplinary collaboration that has 
moved a “theoretical” idea to reality in a short time

• OR and analytics have an important role to play in 
designing a drone response system and integrating it 
within the broader EMS landscape
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Collaborators
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• Sheldon Cheskes

• Laurie Morrison 
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Thanks for listening!

Questions?

Timothy Chan
University of Toronto

tcychan@mie.utoronto.ca
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