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Paul Krugman: “There is no 
paper trail of knowledge”

This is the fundamental 
empirical challenge for 
innovation researchers



Sometimes we can trace 
famous inventions and 
discoveries – Sharpey-

Schafer, Minkowski, 
Langerhans…





What to do?

Inventor biographies



Firm Surveys

Though these generally have 
limited and only surface-level 

coverage



Most common: patent prior 
art



Two major issues:
Does front page prior-art 

actually reflect knowledge 
transfer?

And what kind?





Our results:
1) Extract all in-text references

2) Show large in-text/front page diff
3) Large-scale inventor survey

4) Use ML on text surrounding these 
cites to “extend” survey to full corpus
5) Revisit classic innovation Qs now 
that we have “access” to meaning



Extraction problem: 1TB of 
raw XML, in different formats

Cites like “Genomic DNA was 
obtained from leaf tissue 

according to Doyle and Doyle 
(1987).” in US6483012.



Algorithm:
1) Drop paragraphs w/o year
2) Index rest of pat. corpus

3) From list of articles, search 
“near” years for combo of 1st

author, journal abbreviation, 
first words of title, page numb…



Very few Type I errors

Able to capture ones like 
“methods for aligning sequences using 

the CLUSTAL program are well described 
by Higgins and Sharp in Gene, 73: 237-
244 (1988) and in CABIOS 5: 151-153 

(1989)).” 



Now available:
A public database of universe of in-
text patent-paper citations going 

back to 1800: 16.8 million of them! 
(Marx and Fuegi 2020)



Key figure:
68% of in-text cites not on FP

79% of FP cites not in-text.



What exactly do these 
citations mean? 

Legal definition + empirics



A legal model to have in mind

- inventors have comparative advantage in 
knowing origin of invention

- lawyers have comp adv in law
- knowledge transfer is costly

- patent has technical requirements and must 
have background and method such that 
“skilled in the art” inventors can follow



Implication:
In-text cites more likely to be known 

by inventor, more likely to be 
knowledge inputs to invention

Front-page cites more likely to 
measure “similar” things to 

invention, hence to proxy for value



Check 1: Biotechnology pairs



171 patent-paper pairs

Of article citations:
avg of 6.9 in patent text
avg of 4.1 on front page



171 patent-paper pairs

Median patent:
13% of article cites in-text
6.3% of articles cites on FP



171 patent-paper pairs

25% have 0 article cites on FP
10% have 0 article cites in-text



171 patent-paper pairs

Not driven by rote copying of 
article text:

only 12.9% have even half of 
article cites in-text



Check 2: R&D Manager Surveys

Carnegie Mellon survey explicitly 
asked about firm’s reliance on 

public sector spillovers



R&D Manager Surveys



So in-text citations help us 
trace “the paper trail” of 
invention, and figure out 

which prior inventions were 
important…but they are 

actually even better!



We survey over 1000 inventors and ask
- how familiar are you with it

- when did you first learn this knowledge
- what is the link to your invention (tool, 

opportunity, background knowledge, 
technical feasibility)

- who added this reference
- was it critical to success of invention

- is it similar to your invention



Most 
interesting, 

though: 
Not just a 

better 
measure, but 

a deeper 
measure



{0

Past empirical work has tended 
to show that the Civil Rights 
laws and EEOC enforcement 
have improved economic 
conditions for protected 
groups (see, e.g., Heckman et 
al., Amer. Econ. Rev. 79:138-
177 (1989); Leonard, Amer. 
Econ. Rev., 86(2):285-289 
(1996)).  However, recent 
authors have expressed 
concerns that…



This is a 
“concept that 

could be 
improved” or 
a “motivation 

for the 
invention” in 

my read

{0

Past empirical work has tended 
to show that the Civil Rights 
laws and EEOC enforcement 
have improved economic 
conditions for protected 
groups (see, e.g., Heckman et 
al., Amer. Econ. Rev. 79:138-
177 (1989); Leonard, Amer. 
Econ. Rev., 86(2):285-289 
(1996)).  However, recent 
authors have expressed 
concerns that…



{0

Recombinant SRD5AIII in vitro 
assays, Ad-SRD5AIII infected 
CV-1 cells and uninfected CV-1 
control cells were prepared 
using methods of Titus et al. 
(Titus et al. Clin Cancer Res 
2005;11:4365:4371) and Pratis
et al. (Pratis et al. J Steroid 
Biochem Mol Biol 2000;75:75-
82). All steps prior to 
incubation were carried out at 
4C. SRD5AIII specific activity 



This refers to 
a tool used 

in the 
invention{0

Recombinant SRD5AIII in vitro 
assays, Ad-SRD5AIII infected 
CV-1 cells and uninfected CV-1 
control cells were prepared 
using methods of Titus et al. 
(Titus et al. Clin Cancer Res 
2005;11:4365:4371) and Pratis
et al. (Pratis et al. J Steroid 
Biochem Mol Biol 2000;75:75-
82). All steps prior to 
incubation were carried out at 
4C. SRD5AIII specific activity 



This is a 
description 
of a similar 
invention or 
of a use of 
the present 
invention

{0

Additional descriptions for 
applications is provided: For 
electrochromics applications 
and devices, including mirrors, 
see for example Argun et al, 
Av. Mater. 2003, 15, 1338-1341 
(all polymeric electrochromic 
devices).  For example, the 
sulfonated polymer exhibits 
very good stability in the 
oxidized form (i.e., very clear in 
the visible region). Mirros with 
good stability in the clear state



This is a 
piece of 

background 
knowledge

{0

Pancreas specific transcription 
factor, 1a (PTF1) plays critical 
roles in formation and spatial 
organization of the murine 
exocrine and endocrine 
pancreas (Krapp A et al., The 
bHLH protein PTF1-p48 is 
essential for the formation of 
the exocrine and the correct 
spatial organization of the 
endocrine pancreas. Genes 
Dev 12:3752-3763, 1998) and 



What can we 
learn?

Not just “I 
combined two 
fields” but “I 

combined tool X 
from outside with 
basic knowledge 
Y from my field”

{0

Pancreas specific transcription 
factor, 1a (PTF1) plays critical 
roles in formation and spatial 
organization of the murine 
exocrine and endocrine 
pancreas (Krapp A et al., The 
bHLH protein PTF1-p48 is 
essential for the formation of 
the exocrine and the correct 
spatial organization of the 
endocrine pancreas. Genes 
Dev 12:3752-3763, 1998) and 



Not just 
“knowledge 
spills over 

locally” but 
“tools diffuse 
faster/slower 
across space 

than basic 
knowledge”

{0

Pancreas specific transcription 
factor, 1a (PTF1) plays critical 
roles in formation and spatial 
organization of the murine 
exocrine and endocrine 
pancreas (Krapp A et al., The 
bHLH protein PTF1-p48 is 
essential for the formation of 
the exocrine and the correct 
spatial organization of the 
endocrine pancreas. Genes 
Dev 12:3752-3763, 1998) and 



Surveys do not 
have enough 

power

Combine survey 
with ML on text to 
massively expand 
“tagged” data on 

knowledge
antecedents!

{0

Pancreas specific transcription 
factor, 1a (PTF1) plays critical 
roles in formation and spatial 
organization of the murine 
exocrine and endocrine 
pancreas (Krapp A et al., The 
bHLH protein PTF1-p48 is 
essential for the formation of 
the exocrine and the correct 
spatial organization of the 
endocrine pancreas. Genes 
Dev 12:3752-3763, 1998) and 



Frontier text classification: 
“convolutional neural net” with word 

embedding

Solved problems: Is this review good or 
bad? What does this clause refer to?  

Which of two options is a sensible 
answer to a posed question?



Accuracy with CNN, word embed., 
“hyperparameters” chosen by algor., 200 

training data: 63-66%; slightly better 
using LLM tool based on GPT-4 API!

Input data will be from survey, so no 
inputs into categorization will involve 

any choice by the researcher



Consider power now.

Do tools diffuse across geography at a 
faster rate than basic background 

knowledge?  This is an interaction.  At 
n=1000 survey result, need fairly large 

effects.  If ML effectively expands sample 
to 1,000,000, however…



- Front page citations are not knowledge 
transfer

- In-text references can be extracted, 
and are wildly different both in what 

they cite and how they are used
- In-text references are surrounded by 

text, which modern computational 
techniques can interpret
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