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Hypertension (HTN)

ØA chronic medical condition in which the blood pressure (BP) in vessels 
elevates to a level higher than its normal range. 
ümajor Public health issue worldwide;
ühighly prevalent with serious consequences (One billion in the world and !

"
in the US)

ØMechanism
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Importance of  HTN Control
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The leading risk for death in North America (WHO)

treating HTN:

77% of  first stroke events occur among patients with HTN 



HTN Control
Ø Good news

üHTN can be controlled with promising benefits 

ØBad news
üOnly a few hypertensive patients have their BP under control 
• In the US, less than half  of  patients with HTN have it controlled!
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Reasons for The Poor Control of  HTN?
1. HTN is asymptomatic

üsilent killer
üsolution: keep track of  BP 

2. BP is complex; fluctuates both in the short- and long-terms. 
üvery difficult consistent and reliable measurement of  BP.

3. Traditional BP measurement is noisy
üObscuring the true underlying BP. 

4. 1,2,3 => profound subjectivity in clinical decision-making!
ü physician inertia:

• Physician’s failure to adequately adjust treatment
(i.e., add medication) in response to elevated BP 5

“humanistic” issue related to “physician behavior”
or judgment bias

“to err is human!”

Solution: 
increase the accuracy of:
• measurement 
• predictions 

med. literature



BP Measurements
ØMeasurement

1. Traditional approach (gold standard)
ü peripheral BP
ü noisy : inaccurate

2. New technologies
ü e.g., tech. based on ultrasound
ü Applanation Tonometry or Automated Office BP (AOBP)
ü noise-free or at least less noisy
ü more costly (staff, time, technology, etc.)
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low adoption of  these technologies
→ uncertainty over their benefits vs cost!

Value of  Information (VOI)
comparing our best decisions:

in the presence and absence of  information



HTN Control

1. Measurement
1. Systolic BP (SBP): usually on quarterly basis

2. Treatment
• Medication therapy through a class of  medications called antihypertensives
• Usually combination therapy (i.e., multiple medications)

Five common classes of antihypertensives:
1. Beta Blockers
2. ACEI (Angiotensin-Converting-Enzyme Inhibitor)
3. ARBs: Angiotensin II Receptor Blockers
4. Diuretic (aka. thiazide)
5. CCBs (Calcium Channel Blockers)
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Problem Statement
ØHow HTN can be controlled considering:

üMeasurement uncertainty 
• underestimation vs. overestimation

üIntervention trade-off  
• Optimal course actions (medication therapy)
• too early (unnecessary medication side-effects) vs. too late (risk of  CVD)

ØFrom analytics perspective
ØHow to effectively marry predictive analytics and prescriptive analytic → VOI?
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Learning (prediction)

Optimization

focus of  today’s presentation



How BP Evolves in the short- and long-term?
1. Everyone has a mean BP (𝜃#): changes over time and is unobservable → basis for 

physician’s medication decision
2. In the short-term (e.g., daily), one’s BP observation (𝑏#) varies according to a Normal 

distribution with 
ümean= 𝜃!
üvariances= person’s short-term BP variability (𝜎"#) + measurement noise (𝜏#) 

3. In the long-term (e.g., quarterly), 𝜃# changes according to a Normal distribution such that:
ümean at 𝑡 + 1= mean at 𝑡 + known/deterministic changes (such as change due to aging and medications)
üvariance= person’s long-term BP variability (𝜎$#)
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𝜃!"# 𝜃! 𝜃!$#
Underlying BP

(hidden)

𝑏!"# 𝑏! 𝑏!$#BP Observation

long-term
𝜃!= 𝜃!"#+ 𝑒%
𝑒% ∼ 𝑁(𝜇%, 𝜎%&)

short-term
𝑏!"#= 𝜃!"#+ 𝑒'

𝑒' ∼ 𝑁(0, 𝜎'&+ 𝜏&
(!

)

𝑡 − 1 𝑡 𝑡 + 1



The Framework for Prediction and Decision-Making
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𝜃!
Underlying BP

(hidden)

𝑏!BP Observation
𝑡 − 1

2. prediction/learning
𝝅𝒕 𝜽𝒕 = 𝑵 𝝁𝒕, 𝝈𝒕𝟐

1. observation

3. decision-making: choose action 𝒂𝒕 optimally

𝜇): 𝑏𝑒𝑠𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝜃)

𝜎)*: 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 𝑎𝑟𝑜𝑢𝑛𝑑 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

Prediction/belief:
𝝅𝒕𝒍 𝜽𝒕 = 𝑵 𝝁𝒕𝒍 , 𝝈𝒕,𝒍𝟐

two prediction/learning strategies

Surprise-Induced Learning (SIL)
accounts for judgment bias

learner 𝑙 = 𝑆𝐼𝐿

Kalman Filtering (KF)
optimal learner (learning benchmark)

learner 𝑙 = 𝐾𝐹

noise-free BP measurement
(new tech) 

noisy BP measurement
(traditional tech.) 

learning/prediction is needed
𝜋./ 𝜃.

optimal decisions
compute outcomes

optimal decisions
compute outcomes

compare
best outcomes
→VOI



The Problem
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The stochastic environment of the BP evolution and the noisy nature of its measurements mandates 

strategies for estimating the true state of the BP mean %# by the physician through the patient’s BP 

observations collected over time [REF]. We model this estimation process through the strategies that can 

be undertaken by physicians to learn their patients’ %#. In current hypertension management practices, the 

underlying true BP level is what accounts for the risk of CVD events caused by hypertension (as opposed 

to its occasional elevations) and is used to decide about the medication therapy intervention [well-

established medical literature].  

In practice, "# is what the physicians observe in the clinics, and these observations constitute the basis for 

the medication intervention made by the physician through their influence on the physician’s overall 

judgment (i.e., estimation) about the patient’s true BP status. To do this, the physician employs the BP 

measurements (i.e., "#) to learn the true BP mean, and then make their best intervention decisions, namely, 

if, when, and which medication should be prescribed. In our study, we assume that the measurements are 

collected sufficiently distant in time such that the persistent factors affecting BP have a chance to fluctuate. 

Analysis of the correlated measurements, observed close in time, are beyond the scope of the proposed 

study.  

Figure xx illustrates the timeline of events and decisions regarding the hypertension management as 

explained above. 

Timeline of decision and events 

 

3.2. Learning Models 

In this section, we propose two approaches, to model how the true BP mean, i.e., the ground truth, can be 

learned sequentially, captured as belief updating, based on BP measurements over time. In both algorithms, 

patient visits next visit

prior belief about 
patient’s BP
!"#$

patient's BP 
measurement 

%"

updated belief 
about

patient’s BP
!"

deciding if & 
which medication 

to add
&"

' ' + 1

BP evolves
stochastically
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Learning Optimization

We model both to capture
the entire decision-making process



KF Learning
ØKF characterized the parameters of  belief  about 𝜃., i.e., 𝜋./0 𝜃 as follows:

Ø𝐾. ∈ [0,1] is called Kalman gain which identifies the relative contribution of  the 
new evidence 𝑏. in building the new belief.

Ønew belief/prediction= convex combination of  old prediction and the new 
observation

Ødoes not account for any subjectivity (hence bias) in predictions
12
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as well as its noisy measurement, explained in 3.1, in the simplest form, otherwise, we would need more 

complex forms of KF such as extended KF [REF]).  

For a stochastic process following the LDS in (1), the unknown BP mean, which is now treated as a random 

variable, can be expressed using the following belief distribution: 

 @#AB(%#) ≡ @#AB(%) = 8>D#AB, &#,AB( ? (2) 

Where D#AB and &#,AB(  are the belief (about the true BP mean) and the uncertainty of the belief, respectively, 

which can be computed according to the KF algorithm in the following way: 

 3D#
AB = E#"# + (1 − E#)D#<=AB

&#,AB( = (1 − E#)H#
 (3) 

where: 

 E# =
H#

2( + H#
 (4) 

 H# = &#<=,AB( + &*( (5) 

The derivation of the above equations can be found in [REF]. In the KF belief updating mechanism, E# ∈

[0,1] is called Kalman gain which identifies the relative contribution of the new evidence "# in building the 

updated belief. As such, the KF learning algorithm, established the updated belief about the BP mean, as a 

weighted average of the accumulated belief D#<=AB  (i.e., past information or history) and the new BP 

observation "# (i.e., the new information). Note that in the KF learning procedure, except for the belief 

initiation step (i.e., setting the initial belief @LAB(%) with parameters DLAB and &L,AB( ), the whole process is 

carried out objectively, hence the universal among all decision-makers. 

3.2.2. Surprise-Induced Learning (SIL) 

As the second learning approach, we propose a novel learning algorithm which is a modified version of the 

conventional Bayesian belief updating mechanism. Bayesian belief updating has been applied successfully 

in modeling the human learning (Fiser, Berkes, Orban, & Lengyel, 2010; Berkes, Orban, Lengyel, & Fiser, 

2011; Kolossa et al., 2013). In the following paragraphs, we explain the rationale behind such modification 

as well as its operationalization.  
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The weight we should 
assign to the new observation/evidence 

as opposed to the history/prior belief



Surprise Induced Learning (SIL): a modified Bayesian updating!
ØConventional Bayesian Updating → very similar to KF!

ØThe issue:
üConventional Bayesian updating assumes stationary mean → belief  convergence!

13

𝜋.1 𝜃. ≡ 𝜋.1 𝜃 = 𝒩 𝜇.1 , 𝜎.,12

0
𝝁𝒕𝑩 = 𝝆𝒕𝒃𝒕 + 𝟏 − 𝝆𝒕 𝝁𝒕5𝟏𝑩

𝜎.,12 = 1 − 𝜌. 𝜎.57,12

𝜌. =
8*+,,.
/

8*+,,.
/ 9:/

Not reacting to the new observation



SIL Strategy: a modified traditional Bayesian Updating!
ØTo resolve the issue:

üWe introduce the notion of  surprise, as:

14

𝑠. = 91, if |𝜇.57 − 𝑏.| ≥ Δ
0, otherwise

surprise ~ observing unexpected events

difference between the prior belief  and the new evidence

threshold for the expectedness
of  events

Signal for BP regimen change
When surprise occurs, we impose a shock to the belief/prediction system by resetting 

the belief  updating mechanism such that:
• maximum belief  uncertainty (we are in a surprise state)
• maximum weight to new observations → surprise triggers attention
• minimum weight to the prior belief



SIL Strategy

15
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likelihood of events at the center of their definitions of surprise in an objective manner, we define surprise 

based on the prospect of the physician over what she expects to observe. Our definition is simpler and more 

intuitive as it only compares values of prior belief and new observation. These make it more appealing for 

applications in clinical decision-making. An expectation-based and subjective definition of surprise has 

also been introduced in the X domain by [EPFL], but they have a more complex definition of surprise and 

define it as a continuous metric which always happen, yet with different magnitude.  

In our proposed novel algorithm for learning, when surprise occurs, we impose a shock to the physician’s 

belief system by resetting both &#( and P# to their initial values with which the learning has begun. This, in 

turn, readjusts the relative weight of the new evidence as well as the uncertainty around the new belief, such 

that 1) maximum attention will be paid to the surprising evidence, and 2) the uncertainty around the new 

belief will be maximal. In summary, surprise leads to attention to the new information and increases 

uncertainty of the belief system.  

More formally, in our proposed learning algorithm (indexed by SIL), the distribution of the belief about the 

ground truth can be expressed as: 

 @#WXY(%) = 8>D#WXY, &#,WXY( ? (11) 

Where: 

 3 D#
WXY = P#"# + (1 − P#)D#<=WXY ; 															&#,WXY( = (1 − P#)&#<=,WXY( 							if	R# = 0

D#WXY = P="# + (1 − P=)D#<=WXY ; 	 																		&#,WXY( = (1 − P=)&L,WXY( 							if	R# = 1 (12) 

 P# =
&#<=,WXY(

&#<=,WXY( + 2( ⇒ P= =
&L,WXY(

&L,WXY( + 2( (13) 

Note that according to the SIL, when encountering surprise, the history (i.e., accumulated information) 

won’t be completely ignored; instead, it will be given minimal weight as a response to the signal for change 

in the history, triggering maximal attention to the signal. This also allows returning to the previous regimen 

(although at a lower speed), if the signal was just a random event and not a consistent indication of the 

change in the underlying BP mean. 
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SIL Strategy
ØΔ: characterizes the physician’s learning behavior → physician’s characteristics → commitment to belief

üphysician with low 𝚫→ undercommitment to belief
• experiences more frequent surprises, 
• lower expectation for change → perceiving even small changes as unexpected,
• assigns larger weights to the new observations → overestimating evidence

üphysician with high 𝚫→ overcommitment to belief
• becomes surprised less frequently, 
• higher expectations for change, → ignoring larger changes
• with time, she assigns higher weights to her own belief  → underestimating evidence
• Captures the so-called physician inertia (a key obstacle in HTN treatment recently mentioned in the EU Guideline for HTN control)

ØBoth cases indicate sub-optimal learning behaviors. 
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Question: Is there an optimal Δ? →
Answer: Yes! The one which minimizes prediction error or maximizes outcomes!



Data Setting at the Montreal General Hospital 
ØTwo sets of  data

1. Noise-Free Environment
üPatients undergoing meticulous BP measurements in the clinic
üQuarterly visits
üUsing Automated Office Blood Pressure (AOBP) technology

2. Noisy Environment
üFor the same patient
üAt the same day of  clinic visit
üUndergoing 24hr BP measurement, every 20-30min

• Called 24hr BP measurement or Ambulatory BP Monitoring (ABPM)
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Characterizing Optimal Decision Making Through Optimization
ØMarkov Decision Procession (MDP)

üChoosing optimal medication decisions to maximize the expected quality adjusted life years 
of  patients over the problem horizon 

ØKey component:
üStates: information needed for making decisions and characterizing the evolution of  

system → patient’s BP mean (either we know it or we learn it)

ØBoth learning strategies used in our study are Markovian, sequential, and 
recursive → ideal for MDP

ØStates in SIL strategy:
üBest prediction about patient’s BP mean → 𝜇#?@A
üNumber of  office visits since last surprise 𝑛# = 𝟎, 1, … , 𝑁

• one-to-one relationship to 𝜎!#!
• measures belief  strength 

18

surprise state



Optimization Framework
ØWe develop three MDP models:

Under Noise-Free Measurement:
1. Under noise-free measurement, called MDP0.

Under Noisy Measurement:
2. Under noisy measurement but KF learning strategy, called MDPKF.
3. Under noisy measurement but SIL learning strategy, called MDPSIL.

19



Optimal Policies for 𝑴𝑫𝑷𝑺𝑰𝑳 𝚫∗

20

4.6. Computational Results

Our numerical experiments as in §4.6.3 show that the ⇡max

As4-4 is limited to 0.0968 (less

than 10% in probability).

Neglecting the violation from As4-4, and following the same set of proofs as in Appendix

A, we can now establish the optimality of threshold policy with the state variable nt according

to the following theorem:

Theorem 5. Suppose that As.1-4 - As4-4 hold for t = 1, 2, ..., T . Then, at each period

t and for fixed levels of µt and mt, there exists an optimal policy a⇤
t
(µt, nt,mt) which is

nondecreasing in nt. In other words, there is a threshold n⇤
t
such that:

a⇤
t
(µt, nt,mt) =

8
>><

>>:

i�, nt < n⇤
t

i+, nt � n⇤
t

(4.25)

4.6.2.2 Implications of Threshold Policies with nt

The threshold policy with nt (stated in Theorem 5) implies that for a fixed blood pressure

level µt and age t, it’s not optimal to prescribe a new medication until we are su�ciently

confident (i.e. at least n⇤
t
) about the current level of blood pressure. Figure 4.6 depicts an

example of such policy for a certain age and other patient characteristics.
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4.6. Computational Results

Figure 4.6: Example of Threshold Policy with n
age 9 8 7 6 5 4 3 2 1
40 153 155 158 162 166 171 175 181 187
50 150 153 154 161 165 168 174 180 186

age age=40 50
1 187 186
2 181 180
3 175 174
4 171 168
5 166 165
6 162 161
7 158 154
8 155 153
9 153 150
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In the above plot, the wait decision can also be interpreted as a = {i�} and themedication

prescription decision as a = {i+}.

This policy also suggests that if it’s optimal to prescribe a medication at a certain blood

pressure (say µ1) for a certain number of o�ce visits (say n1), the prescription is surely

optimal at a larger number of o�ce visits (hence increased confidence level) for the same

blood pressure level. In other words:

a⇤
t
(µ1, n1) = i+ ) a⇤

t
(µ1, n � n1) = i+ (4.26)

In a similar way, if it’s optimal to prescribe a medication at a certain blood pressure

(say µ2) for a certain number of o�ce visits (say n2), the prescription is surely optimal for
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This policy also suggests that if it’s optimal to prescribe a medication at a certain blood

pressure (say µ1) for a certain number of o�ce visits (say n1), the prescription is surely

optimal at a larger number of o�ce visits (hence increased confidence level) for the same

blood pressure level. In other words:

a⇤
t
(µ1, n1) = i+ ) a⇤

t
(µ1, n � n1) = i+ (4.26)

In a similar way, if it’s optimal to prescribe a medication at a certain blood pressure

(say µ2) for a certain number of o�ce visits (say n2), the prescription is surely optimal for
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Value of  Information (VOI) Analysis
ØDefinitions:

ü𝑣B: value function under perfect information (i.e., noise-free)
ü𝑣𝒍: value function under imperfection information, learner 𝒍 (i.e., noisy)

üRatio of  Value of  Information (RVOI)

21

𝑽𝑶𝑰 = 𝒗𝟎 − 𝒗𝒍: in terms of  Total QALY gained 

𝑹𝑽𝑶𝑰 = 𝒗𝟎5𝒗𝒍

𝒗𝒍
: in terms of  %Total QALY gained

MDP

Improvement in outcomes as a result of reducing uncertainty over 𝜃)
[max] price paid for reducing uncertainty over 𝜃)



VOI Decomposition : Important Lessons

ØMore specifically:
ü𝑣B: the value function under perfect information.
ü𝑣DE: the value function under imperfect information, yet KF-learner (learning benchmark)
ü𝑣∗: the value function under imperfect information, yet Δ∗-learner
ü𝑣G: the value function under imperfect information, yet ΔGH∗-learner

ØTherefore:

𝑉𝑂𝐼@ = 𝑣A − 𝑣@ = 𝑣A − 𝑣/0
/0→C

+ 𝑣/0 − 𝑣∗ +
E∗→/0

𝑣∗ − 𝑣@
E3→E∗

22In our study: 𝑽𝑶𝑰 = 𝑽𝑶𝑰𝒍 𝝈𝜽 , 𝝈𝒃 , 𝝉, 𝒋 ; l:learner/physician, j:patient’s baseline risk

𝑣∗ − 𝑣" 𝑣#$ − 𝑣∗

𝒗∗

𝑣% − 𝑣#$

𝒗𝑲𝑭𝒗𝒍 𝑣1

price paid for information
(net value of  information)
value of  new technology

price paid for
optimal learning strategy

price paid for
optimal learning behavior

Conclusion: 
• not all the price we pay is because of  not knowing the truth (which can be learned/predicted),
• we also pay for our sub-optimal learning strategy (predictive models) or suboptimal learning behavior!



Conclusions:
Ø The new technology is valuable!
Ø Its value depends on:

üPatient: risk profile and her BP variability
ü Measurement technology: current traditional devices
üPhysician: those who are not good learners pay more!

ØNot all the price we pay for information (because of lack of knowledge) is because of the
information itself (that we tend to know or predict); we also pay for our suboptimal learning
strategies (predictive models) or suboptimal learning behaviors!

23

not choosing the best
predictive models/methods

not using the predictive models
in the best possible way



Thank You!
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