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e Emergency departments:

e Capacity and staffing plans
require a good
understanding of patient
arrival patterns.

e Poor forecasting of demand
can rob patients of timely
critical care.

e Many other examples where accurate models for arrivals

are critical to managers
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CoOMMON PRACTICE

e How are arrival rates specified or estimated in practice
from time stamps of past arrivals?

e Specify a period (say, a week) such that the arrival pattern
repeats itself judged from experience

e Specify a bucket size (say, an hour) and count the arrivals
in each bucket

e Average the bucket counts across periods

e (Optional) fit the piecewise constant curve by a function
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e Strengths
e Robust
e No need to specify a model (nonparametric)
e Efficient to compute
e Weaknesses
e Prior knowledge of the frequency
e Cannot deal with multiple periodicity
e Not easy to interpret
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e An alternative formulation

p
A(t) = Z Cx cos(Vkt + ),

k=0

frequencies vk, amplitudes ck, phases ¢.

e Flexibility: any periodic or non-periodic functions can be
approximated (Fourier analysis)
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e Interpretability
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monthly cycle lunar cycle
Example (Ed Kaplan) Stroﬁ/g monthly arrivals cycle ...but sinusoids also reveal hidden frequency
Nonparametric and sinusoids fit equally well components in arrival patterns

e May open ways to tractable analysis [Eick et al., 1993]
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ESTIMATING ARRIVAL RATES FROM THE DATA

e Data: 4y < b < --- < ty are time stamps of past arrivals

e To estimate the frequencies, use spectral (Fourier) analysis

¢ To estimate the amplitudes and phases, use least square
estimators
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e Discrete Fourier
transform:
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BurT...

e In fact, because of the noise in N(t), and the leakage (finite
T), we are more likely to see

1.0015 cycles/day
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NoT A BiG DEAL? OR...

e Frequency estimation error cannot be larger than O(1/T)
for consistent amplitude recovery
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THE SOLUTION

e Ourinnovation: Weight the number of arrivals at time t with
a window function w(t).
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e Looks biased, but works: ||x — vk|| = O(1/T) even when
vk and vk ¢ are O(1/T) close.
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THE PROPOSED PROCEDURE

1. Compute the windowed DFT:
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THE PROPOSED PROCEDURE

2. Compute a data-driven threshold 7:
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THE PROPOSED PROCEDURE

3. Pick peaks above 7, remove a neighborhood:
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THE PROPOSED PROCEDURE

4. Repeat until no peaks are above 7:
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THE PROPOSED PROCEDURE

5. Based on the estimated frequencies ¥, we can proceed to
estimate the amplitudes and phases by the least squares.

e We can reorganize the observations into buckets of width
dt: [0, dt], [dt,2dt],...,[T — dt, T].
e The observed Y is 0 or 1 for that bucket.
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5. Based on the estimated frequencies ¥, we can proceed to
estimate the amplitudes and phases by the least squares.
e We can reorganize the observations into buckets of width
at: [0, dt], [dt,2dt],...,[T —dt, T].
e The observed Y is 0 or 1 for that bucket.
e Least squares: find ¢k 1 and cx > so that

p p
A1) = crcos(Vkt + ¢k) = _ .1 cos(¥t) + Ck 2 sin(¥kt)
k=0 k=0

minimizes the MSE of the T /dt observations. The same as
linear regression.
e If dt — 0, then (X" X)~'XTY has a closed form.

15



EMPIRICAL STUDY




ARRIVAL DATA FROM AN EMERGENCY DEPARTMENT

Data characteristics:

e Time stamps of 168,392 patent arrivals from 2014 Jan to
2015 Sept (T = 652 days)
e Emergency Severity Index (ESI) level of each patient
e Level 1 most severe (e.g., cardiac disease); level 5 least
severe (e.g., rash)
e We analyze ESl level 2 and level 3 to 5 separately (level 2
are treated in a separate ward)
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ESI LEVEL 2

e 66,240 patient arrivals
e Estimated frequencies: #; = 1.00, ¥» = 2.00, V3 = 3.00,
vy =0.714, 5 = 0.857, il = 1.143
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INTERPRETATION

e iy =1.00, i» = 2.00, 3 = 3.00 make up the daily cycle.
e Uy =0.714 (5/7), s = 0.857 (6/7), Vg = 1.143 (8/7) make
up the weekly cycle.
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INTERPRETATION

e iy =1.00, i» = 2.00, 3 = 3.00 make up the daily cycle.

o V4, =0.714 (5/7), s = 0.857 (6/7), /s = 1.143 (8/7) make
up the weekly cycle.

e There are two peaks in a day; the intensity of arrivals fade
steadily into the weekend.
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ESI LEVEL 3 TO 5

e 99,205 patient arrivals
e Estimated frequencies: #; = 1.00, ¥» = 2.00, V3 = 3.00,

Vs =0.857
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INTERPRETATION

e Only one weekly cycle is present 4, = 0.857. The weekly
cycle is weaker than level 2.
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INTERPRETATION

e Only one weekly cycle is present 4, = 0.857. The weekly
cycle is weaker than level 2.

e Unable to capture the localized spikes on Monday, will
need more weekly cycles
e In both cases

e No monthly cycles are identified
e No seasonal cycles are identified, probably because T is
not large enough
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SUMMARY

We propose a sine-wave-based approach to the modeling and
estimation of non-stationary arrival processes. Compared to
the common approach:

e Not requiring prior knowledge of periods
e Can handle conflated multiple periodicity

Much sparser (3p vs. hundreds of parameters)

May provide interpretable insights

Computation is not straightforward
Sensitive to the threshold

May miss localized spikes
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