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Abstract

Constraint Programming (CP) has been given a new lease of life after new CP-based procedures
have been incorporated into state-of-the-art solvers, most notably the CP Optimizer from IBM.
Classical CP solvers were only capable of guaranteeing the optimality of a solution, but they could
not provide bounds for the integer feasible solutions found if interrupted prematurely due to, say,
timelimits. New versions, however, provide bounds and optimality guarantees, effectively making
CP a viable alternative to more traditional mixed-integer programming (MIP) models and solvers.
We capitalize on these developments and conduct a computational evaluation of MIP and CP
models on 12 select scheduling problems.1 We carefully chose these 12 problems to represent a wide
variety of scheduling problems that occur in different service and manufacturing settings. We also
consider basic and well-studied simplified problems. These scheduling settings range from pure
sequencing (e.g., flow shop and open shop) or joint assignment-sequencing (e.g., distributed flow
shop and hybrid flow shop) to pure assignment (i.e., parallel machine) scheduling problems. We
present MIP and CP models for each variant of these problems and evaluate their performance
over 17 relevant and standard benchmarks that we identified in the literature. The computational
campaign encompasses almost 6,623 experiments and evaluates the MIP and CP models along five
dimensions of problem characteristics, objective function, decision variables, input parameters, and
quality of bounds. We establish the areas that each one of these models performs well and recognize
their conceivable reasons. The obtained results indicate that CP sets new limits concerning the
maximum problem size that can be solved using off-the-shelf exact techniques.

Keywords: Shop scheduling, Flow Shop, Job Shop, Flexible Job Shop, Open Shop, Parallel
Machines, Benchmarks, Constraint Programming, Mixed Integer Programming.

1. Introduction

Mathematical programming is, by far, the most widely employed approach for modeling scheduling
problems. Mathematical programs, often in the form of mixed-integer programming (MIP) models,
are the first choice for researchers as the rich literature confirms (Naderi and Ruiz, 2010; Stafford,
1988; Stafford et al., 2005; Pan, 1997; Tseng et al., 2004; Tseng and Stafford, 2008; Wilson, 1989;
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1We note that comparison is conducted using the default settings of solvers.
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Manne, 1960; Wagner, 1959; Roshanaei, 2012). A much less studied alternative is Constraint
Programming or Constraint Propagation (CP). Recently, the effectiveness of CP models has been
recognized by researchers (Samarghandi and Behroozi, 2017; Ku and Beck, 2016; Malapert et al.,
2012; Laborie et al., 2018; Bukchin and Raviv, 2018). Despite this recent trend towards CP, MIP
models are still actively studied (Androutsopoulos et al., 2020; Unsal and Oguz, 2019; Valicka
et al., 2019). As far as scheduling optimization is concerned, there are two main CP approaches for
formulating a scheduling problem: classic (integer-based) and modern (interval-based). The classical
CP approach uses integer variables and global constraints such as disjunctive and/or cumulative
while the modern approach, as in the IBM CP Optimizer uses interval variables and interval-specific
functions (CPOptimizer, 2017; Laborie, 2015). Laborie et al. (2018) discuss the advantages of the
CP Optimizer approaches over classical CP approaches for scheduling problems. Samarghandi and
Behroozi (2017) Ku and Beck (2016), and Malapert et al. (2012) use the classical CP and Laborie
et al. (2018) use the CP Optimizer. In fact, for all our scheduling problems that do not contain
“machine allocation” dimension, the two formulations are very similar and there is no real advantage
of using an interval-based formulation.2 The additional advantage of the interval-based formulation
is when the problem has an allocation dimension that can be efficiently formulated with optional
interval variables and alternative constraints (i.e., D-FSP, H-FSP, and PMSP).

CP models and techniques are well known for producing high-quality integer solutions. However,
CP techniques have had, until relatively recent times, one major drawback: a lack of bounding
mechanism—a mechanism similar to the LP relaxation within mathematical programming solvers,
that provides optimality gaps for the integer solutions found before optimality. Furthermore, the
lack of bounding mechanisms in the tree search algorithms employed inside CP methods results
in a lack of any bounds on the quality of their integer solutions. The idea of calculating bounds
for found integer solutions by CP has existed since the seminal work of Hooker and Yan (2002)
that calculates bounds via the relaxations of global constraints. Fontaine et al. (2016) have used
bounds in hybrid solvers for solving scheduling problems. Despite these early advances, it took a
few years for developers of CP solvers to incorporate these ideas. As a result, classical off-the-shelf
CP solvers could only provide optimality proofs for those scheduling problems which were optimally
solvable within the timelimit; otherwise, no bound could be provided for the integer solutions
found before the timelimit is reached. More modern CP approaches, like the aforementioned CP
Optimizer (starting with CPLEX 12.2) include automatic search procedures that are complete, i.e.,
given an optimization problem, CP will either find a proven optimal solution or will prove that the
problem has no feasible solution. Additionally, bounds are provided and optimality gaps for any
integer solution found are given. As such, CP models can be viewed as complete models and their
performance can therefore be compared with mixed-integer programs (MIPs) that have been the
primary modeling tool for the exact solution to scheduling problems in the literature.

As of late, the interest in the applications of CP for scheduling problems has been growing
rapidly. Malapert et al. (2012) solve open shop scheduling problems with a CP-based algorithm
and show that this algorithm provides state-of-the-art results. Ku and Beck (2016) solve job
shop scheduling problems using a classical CP approach. Their results show that MIP performs
similarly to CP for problems of moderate sizes. However, CP is superior to MIP for larger instances.
Samarghandi and Behroozi (2017) study a no-wait flow shop and develop two CP models, based
on the classical CP approach, along with three MIP models. They conclude that one of the MIP
models outperforms the other models including two of the CP models they developed. Laborie et al.

2In particular, for the JSP problem, both formulations are basically equivalent. So for a problem like the JSP, what
really makes the difference between CP solvers is the automatic search, not the formulation (and the CP Optimizer
automatic search is known to be particularly efficient for scheduling problems).
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(2018) develop a CP model based on the CP Optimizer approach that produces state-of-the-art
results for job shop and resource-constrained project scheduling problems. Gedik et al. (2018)
proposed CP-based optimization methods for the unrelated parallel machines scheduling problem
with makespan criterion. Meng et al. (2020) also developed a CP model for distributed job shop
scheduling and compared it with MIP models. Laborie (2018) provides an update on the comparison
of different approaches for solving a well-known allocation and scheduling problem, demonstrating
that with the recent advances in the automatic search within the CP Optimizer, a standalone
simple CP model outperforms all existing approaches for cost-based resource-constrained mixed
allocation-sequencing problems.

CP-based models and algorithms have also been applied to other combinatorial optimization
problems such as assembly line balancing (Bukchin and Raviv, 2018), preventive signaling mainte-
nance crew scheduling problems (Pour et al., 2018), cooperative flight departures (Schefers et al.,
2018), operating theatres (Wang et al., 2015; Doulabi et al., 2016; Naderi et al., 2021; Roshanaei
et al., 2020), resource availability cost problems (Kreter et al., 2018) and container scheduling
(Qin et al., 2020). The performance evaluation of CP Optimizer (among other CP versions) has
garnered significant attraction. For instance, Laborie and Godard (2007) describe the early version
of the automatic search of CP Optimizer and evaluate it on 21 different scheduling benchmarks
(including N-FSP, H-FSP, JSP, OSP, and a generalization of SDST-FSP), whereas Vilim et al. (2015)
include experiments with 7 classical scheduling benchmarks including JSP, OSP and several of their
extensions, including different variants of RCPSP. In these papers, CP Optimizer was compared
against the current state-of-the-art problem-specific approaches. The originality and the interest of
the present paper is to focus on a direct comparison between a CP Optimizer and two popular MIP
solvers, Gurobi 9.1.2 and CPLEX 20.1, two generic exact approaches for solving MIP models.

This paper studies different variants of scheduling problems including parallel machines, flow
shops, job shops, and open shops as they are the most prevalent shop scheduling problems in the
literature. We consider makespan as the most widely considered scheduling objective. We exclude
single-machine problems from this study as very effective exact approaches exist for most regular
scheduling objectives. The extant literature on flow shop scheduling is very rich and many different
variants have been studied. To gain a deeper understanding of how these variants contribute to
the complexity of flow shops and the performance of CP and MIP models, we study the following
eight flow shop variants while also considering different optimization objectives: 1) permutation
flow shops, 2) non-permutation flow shops, 3) hybrid flow shops, 4) distributed flow shops, 5) total
completion time permutation flow shops, 6) total tardiness permutation flow shops, 7) no-wait flow
shops, and 8) sequence-dependent setup times permutation flow shops.

The choice of all these problems is motivated by many factors. These problems provide op-
portunities to analyze performance from different angles. We consider the permutation flow shop
to minimize makespan as a basic problem that has been studied extensively in the literature and
for which many different mathematical models and exact approaches have been proposed. The
other problems are different in either the objective function, problem characteristics, or problem
decisions. We consider the permutation flow shop with total completion time and total tardiness
minimization to study how a change in the objective function affects performance. As the problem
characteristics and decisions are the same, we are able to analyze the impact of different objectives
on computational time and solution quality of these models. As for the problem characteristics, we
consider the no-wait restriction and sequence-dependent setup times on top of the basic problem.
These characteristics do not change the problem decisions (the solution representation can still be a
simple permutation) so we can analyze the impact of these characteristics on the performance while
the objectives and decisions remain unaltered.

Scheduling problems commonly entail two decisions: assignment and sequencing. Some of the
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problems we study can be considered as pure sequencing, whereas others are pure assignment
problems. For example, the open shop is a pure sequencing problem with no precedence constraints
among operations of a job. The flow and job shops are sequencing problems with precedence
constraints. The permutation flow shop needs one job sequence while the job shop requires one
job sequence for each machine, similar to non-permutation flow shops. Therefore, they have more
sequencing decisions to make when compared to the permutation flow shop. The distributed and
hybrid flow shops and the flexible job shops include both sequencing and assignment dimensions.
More specifically, the distributed flow shop requires one assignment for each job while the hybrid
flow shop needs one assignment for each job at each stage: each stage consists of functionally
identical machines, which means more assignments for each job. Flexible job shops differ from the
previous two scheduling problems in that the processing route of different jobs is arbitrary and the
number of operations varies from one job to another. Additionally, the processing time of each
operation depends on the processor to which it is assigned. Thus, one needs to make a processor
assignment decision for each particular operation and the sequencing decision for the given set
of operations assigned to each processor. The heterogeneity in processor performances and the
arbitrary route of jobs on the shop floor render the flexible job shop as one of the most intractable
scheduling problems. Finally, the parallel-machine scheduling problem is a pure assignment problem,
i.e., the sequencing decision does not impact the objective function (makespan). With this set
of selected problems, we are able to evaluate the performance and limits of both CP and MIP models.

Contributions, Scope, and Scale of this study. This paper offers quadruple contributions to
the literature. We study 12 disjunctive shop scheduling problems that represent a wide variety of
scheduling problems occurring in different service and manufacturing settings.3 These scheduling
settings range diversely from pure sequencing (e.g., flow shop and open shop) to joint assignment-
sequencing (e.g., distributed flow shop and hybrid flow shop) to pure assignment (i.e., parallel
machine) scheduling problems. First, we ascertain which solver performs generally better for our
select disjunctive shop scheduling problems.4 To do so, we compare MIP models on well-established
and state-of-the-art mathematical programming solvers: Gurobi 9.1.2 and CPLEX 20.1. Having
compared the two solvers and ascertained the best mathematical programming solver, we compare
it against the most popular constraint programming solver, CP Optimizer 20.1. This comparison is
especially interesting as the CP Optimizer 20.1 is now providing bounds on the quality of its feasible
solutions—a valuable feature that did not exist in CP Optimizer versions before CP Optimizer
12.8. This comparison entails developing equivalent CP models for each scheduling problem. This
comparison will reveal as to which solver is generally able to achieve better performance. Another
purpose that this analysis serves is that in case CP models are recognized as a superior modeling
choice, one can determine whether the poor performance of MIP models is ascribable to either
the MIP Technology itself as a poor modeling choice or the mathematical programming solvers or
both of them.5 Second, we determine the best solver for each particular scheduling problem. This

3Our comparative study includes disjunctive shop scheduling problems; as such, we do not compare the performance
of MIP and CP models on cumulative scheduling problems (i.e., a machine can process simultaneously more than one
operation. We also only test the performance of our CP models using CP Optimizer 20.1 as this is the most popular
CP solver in the literature. The comparison of CP models on different CP solvers does not fall within the scope of
this study.

4Given the high-level nature of this study, we do not seek to ascertain why a certain solver outperforms others.
5We note that all these comparisons are based on the default settings of the chosen solvers. Comparing these

models on different solver’s settings requires a rigorous analysis for each of these scheduling problems and warrants a
separate paper for each problem (see e.g., Ku and Beck (2016) for job shop scheduling problem). We thus do not seek
to conduct such detailed analyses in this paper.
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analysis is especially useful if no solver yields a universally superior performance on all scheduling
problems in which case scheduling practitioners need to be selective in choosing their solvers. Third,
we quantify the exact amount of improvement that each solver can achieve on each scheduling
problem and make these results publicly accessible, which will hopefully foster more comparisons
between the performance of existing metaheuristics with our new bounds and solutions. Our new
bounds and feasible solutions pave the ground for more accurate evaluations of the quality of existing
metaheuristics’ integer solutions, encouraging hopefully more researchers to employ exact solvers
instead of randomized search techniques. Fourth, we provide insights on how performance of
different scheduling problems are influenced by the choice of, e.g., problem characteristics, objective
functions, problem decisions, and problem sizes. We provide these insights by applying our MIP
and CP models to 6,623 famous problem instances gathered from the scheduling literature. We
believe the balance of the scope (the number of scheduling problems and solvers considered) and the
scale (the number of problem instances considered for each problem) of this paper is sufficient to
convey our insights and will be of interest to the general scheduling community.

A summary of findings. In this paper, we show that MIP models are the best candidates
only for solving parallel machine scheduling problems and achieve very low average optimality gaps
and RPDs. For all the other 11 considered scheduling problems, CP models are clearly better
and sometimes by significant margins. The use of CP models instead of MIP models results in
vast reductions in the average optimality gap and RPD values. Furthermore, we show that our
CP models extend the capability of exact techniques to solve larger problem instances, previously
unattainable by exact off-the-shelf techniques.

We structure this paper as follows. We present preliminaries on modeling paradigms used to
formulate scheduling problems in Section § 2. In Section § 3, we present our mixed-integer and
constraint programming models for the select scheduling problems and discuss their structural
constituents. In Section § 4, we (i) provide a summary of the benchmarks used to solve these
scheduling problems, (ii) present our results, and (iii) discuss the areas in which each of our models
works best. We conclude the paper in Section § 5 and provide future directions for the current study.
We include some of our alternative CP models for these scheduling problems in Appendix A.

2. Preliminaries

In order for the comparative study to be self-contained, some basic preliminaries are given for
the MIP and CP models, where the emphasis is placed on the different dimensions and possibilities
for variable definition.

2.1. Integer programming models
The vast majority of scheduling models use binary variables to decide on the sequence/assignment

of jobs and use continuous variables to transform the sequence into a schedule. Each modeling
approach can be seen as a different alternative to how these variables are defined. In the following, we
loosely group the most popular modeling approaches: position-, time-, sequence- and Manne-based.
For ease of exposition, we explain them using a numerical example with four jobs and a single
machine.

• Position-based (Wagner, 1959): This approach models the sequencing problem as an as-
signment problem, where jobs are assigned to the positions in a sequence. The number of
positions is equal to the number of jobs. For the example with four jobs, the model needs 16
binary variables: ejk takes value 1 if job j is assigned to the k-th position in the sequence;
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and 0 otherwise:

Position 1 Position 2 Position 3 Position 4


Job 1 e11 e12 e13 e14
Job 2 e21 e22 e23 e24
Job 3 e31 e32 e33 e34
Job 4 e41 e42 e43 e44

• Sequence-based (Wilson, 1989): Here the variables determine the immediate preceding job
for each job. In a complete sequence, each job has one immediate preceding and one immediate
succeeding job, with the exception of the first and last jobs. For the first job, we additionally
consider a dummy job 0 as the first job in the sequence. For the numerical example, the model
needs 16 binary variables: zjj′ takes value 1 if job j′ immediately succeeds job j (j′ 6= j); and
0 otherwise:

Job 0 Job 1 Job 2 Job 3 Job 4


Job 0 − z01 z02 z03 z04
Job 1 − − z12 z13 z14
Job 2 − z21 − z23 z24
Job 3 − z31 z33 − z34
Job 4 − z41 z42 z43 −

• Manne-based (Manne, 1960): A different alternative uses binary variables to determine the
relative sequence of each pair of jobs. That is, it specifies whether or not a job precedes
another job, but not necessarily immediately, as it does in the sequence-based approach. For
the numerical example, this approach requires only 6 binary variables: xjj′ takes value 1
if job j′ succeeds job j (j′ > j); and 0 otherwise. It also does not need the dummy job 0.
Obviously, if job j succeeds job j′, then job j′ does not necessarily precede job j. Thus, we
have xjj′ = 1− xj′j and need either the upper or lower triangular part of the decision variable
matrix to represent a valid sequence:

Job 1 Job 2 Job 3 Job 4


Job 1 − x12 x13 x14
Job 2 − − x23 x24
Job 3 − − − x34
Job 4 − − − −

• Time-based (Bowman, 1959): Different from the previous alternatives, this one directly
schedules jobs with the binary variables, without the need for additional variables for con-
structing the schedule. The continuous time horizon is discretized into smaller time periods
and variables determine in which time periods a job is being processed. To this end, we need
variables for each job j and time period t: qjt takes value 1 if job j starts its processing at
time period t; and 0 otherwise. For the numerical example, this model requires 4T binary
variables where T is the number of time periods, which needs to be set a priori and based on
the scheduling problem studied. Setting T ranges from being relatively straightforward to
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rather complex.
Period 1 Period 2 Period 3 · · ·


Job 1 q11 q12 q13 · · ·
Job 2 q21 q22 q23 · · ·
Job 3 q31 q32 q33 · · ·
Job 4 q41 q42 q43 · · ·

An ideal model is one that simultaneously possesses a strong LP relaxation and a low number of
branching operations (to ensure integrality of solutions), a mutually exclusive scenario for many
scheduling models. The existence of a higher number of active constraints in a model renders the
LP relaxation of the model likely stronger, at the expense of increasing the number of extreme
points (iterations)—a computationally expensive task when Simplex is to be used as the solution
technique for solving the LP relaxation. On the other hand, the existence of a high number
of binary variables renders the branching operation extremely difficult, because the number of
branching operations increases exponentially in the number of binary variables. Note that after
each branching, an LP relaxation of the problem (if feasible) must be solved to hopefully find an
integral solution. The use of strong LP relaxation makes sense if it causes the pruning procedure
within the branch-and-cut of the mathematical programming solver to effectively eliminate those
fruitless branches that do not contain the optimal solution. Rarely can we find scheduling models
having a tight LP relaxation assisting with branching operations.6 This is partially attributable
to the huge number of disjunctive (big-M) constraints (that must be used in the formulation of
scheduling problems to avoid overlapping of jobs) that disproportionately increases the number
of extreme points without actually tightening the convex hull of the LP relaxation model. This
situation can be exacerbated if a weak LP relaxation of a model is accompanied by an astronomical
number of branching operations. As such, an acceptable scheduling model must strike an effective
balance between its branching efficiency and LP relaxation quality.

The time-based approach is clearly ineffective when the processing times are long and the number
of required time periods increases as the number of binary variables grows very quickly. Additionally,
the discretization of time causes the obtained solutions to be approximate rather than being exact.
However, this approach is helpful for scheduling problems with preemptive jobs, i.e., jobs can be
interrupted during processing. For example, it is useful for project scheduling problems (Tofighian
and Naderi, 2015). The Manne-based model requires the smallest number of binary variables as it
defines one binary variable for each pair of jobs, whereas the sequence-based approach requires two
binary variables for each pair. Empirically, over the years and on different scheduling problems,
researchers have shown that Manne-based models with higher branching efficiency are better than
the Sequence-based models with fewer big-M constraints for solving scheduling problems, stressing
counter-intuitively on the development of models that possess fewer variables than constraints
(Stafford, 1988; Stafford et al., 2005; Wilson, 1989; Pan, 1997; Tseng et al., 2004; Tseng and Stafford,
2008; Naderi and Ruiz, 2010; Roshanaei et al., 2013; Ku and Beck, 2016).7 The sequence-based

6May be only scheduling problems whose objective function values are principally influenced by assignment decisions
for which strong formulations exist—a problem like Parallel Machine Scheduling Problem.

7According to our previous experience with working with some of these select models, we learned that Manne-based
modeling leaves no room for competition for other modeling paradigms, especially when the size of jobs and machines
is significantly large. Furthermore, Roshanaei and Naderi (2021) and Roshanaei et al. (2020) have recently shown
that the time-based modeling approach is substantially inferior to the Manne-based modeling paradigm on a dual
resource-constrained operating room scheduling problem. A similar conclusion has been made for JSPs (Ku and Beck,
2016).
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approach is suitable for scheduling problems with sequence-dependent processing times (i.e., the
processing time of a job depends on its immediate preceding job) or when jobs have travel times
in-between stages. The position-based approach, although requiring as many binary variables as
the sequence-based model, is competitive with the Manne-based approach as it does not require
disjunctive constraints for some scheduling problems. The issue with the Position- and Sequence-
based models is that the solver expends significant branching efforts to find an integer feasible
solution. According to the vast literature on the effectiveness of Manne-based models and in view of
our previous experiences with these select scheduling models, we assertively declare Manne-based
models as being generally superior to other MIP modeling approaches. Hence, all of our MIP models
will be Manne based.

2.2. Constraint programming models
As for CP, we use the CP Optimizer approach for the scheduling problems (CPOptimizer, 2017).

This is in line with the latest publications for different applications8: dry bulk terminals (Unsal
and Oguz, 2019), container yard scheduling (Qin et al., 2020) and operating room scheduling
(Younespour et al., 2019; Naderi et al., 2021; Roshanaei et al., 2020) just to cite a few. Conversely,
the classical CP approach uses integer variables and disjunctive constraints to model scheduling
problems which are not effective in handling some features such as optional operations and setup
times (Laborie et al., 2018).

Interval and sequencing variables are the biggest differences between CP Optimizer and MIP
models. In the CP Optimizer (referred to as CP in short from now on), for each operation we
define one interval variable which is an interval of time during which a job is processed. The start
and end points of the interval variable that fall within a larger interval [α, β) are decisions for the
model. We can formally define an interval variable x as a decision variable whose domain (s, e)
is a subset of {[α, β)|α, β ∈ Z,α ≤ β} where s and e are the start and end points of the interval,
respectively, and l = e − s is its length (see Figure 1). In many applications, the length of the
interval variable is fixed and known in advance. Interval variables can be optional; i.e., part of the
problem is deciding if the interval is present in the solution. The optional interval variable is a
subset of {⊥} ∪ {[α, β)|α, β ∈ Z,α ≤ β} where x = ⊥ means the interval is absent and x = [s, e)
means it is present. The constraint PresenceOf(x) returns 1 if an optional interval variable x exists;
and 0 otherwise. A sequence variable is also defined for a set of interval variables and a value for
the sequence variable is a permutation of the present intervals in that sequence variable (Laborie
et al., 2018).

Timeα β

l

s e

Figure 1: An interval variable with a length of l = e− s within (α, β) where s and e are the start and end time of the
interval variable respectively.

Although it might be possible to formulate complex sequencing scenarios with disjunctive
constraints, the interval and sequence variables enable us to provide a common structure for many

8Note that there are other CP solvers that could be used for our comparison purposes; however, we chose CP
Optimizer as the most popular CP solver for our computational comparison purposes. The determination of the best
choice of CP solver for our scheduling problems does not fall within the scope of our study. This matter can certainly
be pursued as an interesting future study.
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different settings and to exploit them by using the automatic search algorithm in CP (CPOptimizer,
2017). Table 1 shows the functions and global constraints used in the CP models (IBM, 2016).

Table 1: Functions and global constraints used in the CP models presented.

Global constraints

EndBeforeStart it constrains minimum delay between the end of one interval variable
and start of another one.

EndAtStart it constrains the delay between the end of one interval variable and
start of another one.

Alternative it creates an alternative constraint between interval variables.
NoOverlap it constrains a set of interval variables not to overlap each others.
SameSequence it creates a same-sequence constraint between two sequence variables.

Functions

EndOf it returns the end of an interval variable.
Pulse it returns an interval variable (or a fixed interval) whose value is equal to 0 outside

the interval and equal to a non-negative constant on the interval.
Element it returns an element of an array.
PresenceOf it returns the presence status of an interval variable.

In the integer-based formulation, we convert a scheduling problem into a set of interconnected
binary decisions while the interval based CP formulation uses intervals to represent operations and
global constraints to apply complex sequencing aspects which are commonly hard to represent by
binary decisions.

3. Models

The two main generic assumptions across all disjunctive shop scheduling problems are: 1) a job
can be processed by at most one machine at the same time, and 2) a machine can process at most
one job at a time. The verbal description of a scheduling model is as follows:

minimize Objective
subject to Assign jobs to machines if required, (1)

Ensure type-1 non-overlapping if applicable—job precedence, (2)
Ensure type-2 non-overlapping—machine precedence, (3)
Calculate objective, (4)
Define decision variables. (5)

Overlap type-1 refers to the overlap among the operations for the same job as a job cannot be
processed by more than one machine at any time. Overlap type-2 refers to the overlap among the
operations of different jobs on any machine, as machines cannot process more than one job at any
time. Assignment constraints (1) exist in problems with multiple machines per stage: a processing
station with homogeneous or heterogeneous set of machines. Overlap constraints (2) appear in
problems with multi-operation jobs. They also ensure that the precedence among the operations
of jobs, if any, are met. Table 2 contains the notation used in the models. Table 3 also shows the
different decision variables used in MIP models.
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Table 2: Sets and parameters for the MIP models presented.

Sets:

J Set of jobs, j ∈ J
I Set of stages i ∈ I
F Set of factories, f ∈ F
Mi Set of machines at stage i, k ∈Mi

Parameters:

Dj Due date of job j
Pji Processing time of job j on machine i
Sjj′i Setup time of job j after job j′ on machine i

Table 3: Decision variables used in the MIP models presented.

Sequencing

xjj′ 1 if job j is processed after job j′, 0 otherwise (j > j′)
xijj′ 1 if machine i processes job j after job j′, 0 otherwise (j > j′)
hjii′ 1 if for job j visits machine i after machine i′, 0 otherwise (i > i′)
zjj′ 1 if job j is processed immediately after job j′, 0 otherwise (j 6= j′)

Scheduling

cji Completion time of job j on machine i
tj Tardiness of job j
Cmax Makespan

Assignment

wjik 1 if job j is assigned to machine k at stage i, 0 otherwise
yjk 1 if job j is assigned to machine k, 0 otherwise
qjf 1 if job j is assigned to factory f , 0 otherwise
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As per our rationalization in the previous sections, we only present Manne-based versions of our
scheduling models. For the SDST-FSP, though, we use the sequence-based modeling paradigm as
Manne-based formulation is not possible for this problem.

3.1. Permutation Flow Shop Problem (FSP)
In a (permutation or regular) flow shop problem (FSP) a set of jobs must be processed on a set of

stages, each one with only one machine. There are as many operations per job as stages (machines).
Each job visits all stages, starting from stage 1 to the last one. In permutation flow shops, the
sequence of jobs at all stages is the same. That is, once a job is scheduled ahead of another job, all
operations for the first job are processed first at all stages. We model the permutation flow shop
using mixed-integer and constraint programming models.

3.1.1. MIP model
It is well known in the literature that Manne-based modeling approach for the permutation flow

ship is superior to its position-based counterpart (Pan, 1997; Stafford et al., 2005). As such, we
use the Manne-based modeling approach to formulate FSP. Since the sequence is kept fixed on all
stations, there is no additional need for optimizing the sequence of operations for a job at each stage
(i.e., machine). The number of binary sequencing variables for FSP is |J |

2−|J |
2 .9 The mixed-integer

programming (MIP) model for the FSP is as follows:

minimize Cmax, (MIPFSP)
subject to cj1 ≥ Pj1 ∀j ∈ J , (6)

cji ≥ cji−1 + Pji ∀j ∈ J , i ∈ I \ 1, (7)
cji ≥ cj′i + Pji −M(1− xjj′) ∀i ∈ I, j, j′ ∈ J : j > j′, (8)
cj′i ≥ cji + Pj′i −M(xjj′) ∀i ∈ I, j, j′ ∈ J : j > j′, (9)
Cmax ≥ cji ∀j ∈ J , i ∈ I, (10)
cji ≥ 0 ∀j ∈ J , i ∈ I, (11)
xjj′ ∈ {0, 1} ∀j, j′ ∈ J : j > j′. (12)

Constraints (6) ensure that the completion time of each job j on the first machine, cj1 ≥ 0 is
greater than its processing time on that machine, Pj1. Constraints (7) indicate the completion
time of job j on machines in different manufacturing stages (overlap type-1). Specifically, these
constraints ensure that the difference between the completion times of job j at stages i and i− 1 is
at least as large as its processing time on machine i, Pji. Constraints (8) and (9) ensure that no
two operations for two jobs j and j′ can be processed at the same stage (machine) at the same time.
Constraints (10) calculate makespan Cmax, which is the maximum completion time of all jobs on all
stages. Constraints (11) and (12) define the nature of the decision variables.

3.1.2. CP model
We develop a constraint programming (CP) model for the FSP as follows:

minimize Cmax, (CPFSP)
subject to Taskji = IntervalVar

(
Pji
)

j ∈ J , i ∈ I, (13)

9According to Ku and Beck (2016) determining the performance of the MIP models based on the number of
binary variables and constraints is a good first-step analysis, but it is error prone, hence requiring rigorous empirical
evaluation, especially when modern MIP solvers are involved.
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EndBeforeStart
(
Taskji, Taskji−1

)
∀j ∈ J , i ∈ I \ 1, (14)

NoOverlap
(
SVi

)
∀i ∈ I, (15)

SVi = SequenceVar
(
Taskji : j ∈ J

)
∀i ∈ I, (16)

SameSequence
(
SVi, SVi−1

)
∀i ∈ I \ 1, (17)

Cmax = max
(j)

(
EndOf(Taskj|I|)

)
. (18)

Constraints (13) define the interval variables, one for each job at each stage. We assume that the
domain for interval variables is (α, β) = (0,M) where M is a large positive number. Constraints (14)
control overlap type-1. Constraints (15) do the same for overlap type-2. To create the same sequence
for all stages, we need to convert the interval variables into a sequence variable for each stage using
constraints (16) and limit the search to the same sequence using constraints (17). This is so because
the input argument of global constraint “SameSequence” is a sequence variable. Constraint (18) is
the objective calculation which uses the function “EndOf” over interval variables of jobs at the last
stage |I|.

3.2. Non-permutation (general) FSPs (N-FSP)
Unlike the permutation FSP, the sequence of jobs at different stages is not necessarily the same in

the non-permutation FSP (N-FSP). We thus need to generate a sequence or permutation of jobs for
each stage i using the binary sequencing variables xijj′ ∈ {0, 1}. This new sequencing requirement
increases the number of binary sequencing variables from |J |2−|J |

2 in the FSP to |J |
2−|J |
2 × |I| in

the N-FSP, which makes the MIP model’s number of binary variables very sensitive to the number
of stages.

3.2.1. MIP model
Replacing binary sequencing variable xjj′ with xijj′ allows for the design of a separate sequence

for each stage. This change has an impact on the constraints that avoid overlap type-2. We replace
constraint sets (8), (9) and (12) in the MIP model with constraint sets (19), (20) and (21). The
MIP for N-FSP therefore becomes:

minimize Cmax, (MIPN-FSP)
subject to Constraints (6), (7), (10), and (11),

cji ≥ cj′i + Pji −M(1− xijj′) ∀i ∈ I, j, j′ ∈ J : j > j′, (19)
cj′i ≥ cji + Pj′i −M(xijj′) ∀i ∈ I, j, j′ ∈ J : j > j′, (20)
xijj′ ∈ {0, 1} ∀i ∈ I, j, j′ ∈ J : j > j′. (21)

3.2.2. CP model
The CP model for the N-FSP is much simpler than the one developed for the FSP. Constraint

sets (15), (16) and (17) from CPFSP are removed. Relaxing the “SameSequence” requirement
significantly simplifies the model, enabling us to directly use the interval variables to ensure that
overlap type-2 is avoided. The resulting simplified CP model is:

minimize Cmax, (CPN-FSP)
subject to Constraints (13), (14), and (18),

NoOverlap
(
Taskji : j ∈ J

)
∀i ∈ I. (22)
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3.3. Total Completion Time FSP (TCT-FSP)
The manufacturing shop layout and the processing route for jobs in the Total Completion Time

(TCT) FSP (TCT-FSP) is exactly the same as the FSP, with the only change being the objective
function. Unlike the FSP that minimizes Cmax, the TCT-FSP minimizes the total completion time
of jobs: the sum of the completion times for jobs at their last manufacturing stage, |I|. While
the set of constraints remains unchanged, we can calculate the TCT based solely on continuous
variables cji without having to resort to the auxiliary continuous variable Cmax that captures the
maximum completion time of all jobs.

3.3.1. MIP model
The MIP model for TCT objective function (MIPTCT-FSP) is as follows:

minimize
∑
j∈J

cj,|I| (MIPTCT-FSP)

subject to Constraints (6) - (9), (11), and (12).

3.3.2. CP model
The CP model for TCT (CPTCT-FSP) is as follows:

minimize
∑
j∈J

EndOf(Taskj|I|) (CPTCT-FSP)

subject to Constraints (13) - (17).

As can be observed, the function “EndOf” captures the completion time of jobs j ∈ J at their last
manufacturing stage and thus the changes to the previous models are minimal in the case of the
TCT-FSP.

3.4. Total Tardiness FSP (TT-FSP)
The Total Tardiness FSP (TT-FSP) differs from the models that we previously presented in

terms of the objective function. The TT-FSP considers due dates, Dj for each job j ∈ J and ensures
that the amount of total tardiness, tj is minimized. Ideally, we aim to achieve total tardiness equal
to 0, which would indicate that the completion time of each job j ∈ J in its last manufacturing
stage |I|, cj|I|, is lower than its due date Dj . Again, given that this is only a change in the objective
function, the changes required are minor.

3.4.1. MIP model
The MIP model for TT objective function (MIPTT-FSP) is as follows:

minimize
∑
j∈J

tj , (MIPTT-FSP)

subject to Constraints (6) - (9), (11), and (12),
tj ≥ cj|I| −Dj ∀j ∈ J , (23)
tj ≥ 0 ∀j ∈ J . (24)

Constraint sets (23) calculate the tardiness for each job and constraint sets (24) ensure that tardiness
cannot be negative, i.e., a job finishing before its due date is not considered tardy.
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3.4.2. CP model
The CP model for the TT-FSP does not require auxiliary variables as the available functions in

the CP Optimizer allow us to directly calculate the total tardiness in the objective:

minimize
∑
j∈J

max
{

EndOf(Taskj|I|)−Dj , 0
}
, (CPTT-FSP)

subject to Constraints (13) - (17).

3.5. No-wait FSP (NW-FSP)
No-wait flow shops (NW-FSP) share the same sequencing variables, constraints, and objective

function with the FSP with the only difference being that in the NW-FSP we must ensure that the
end time of an operation of a job at any stage coincides with the start of the next operation for
the same job at that stage, i.e., there is no job waiting between stages. To put it differently, the
NW-FSP ensures all operations for the same job are processed one after another with no idle time
between them. The optimal solution for the NW-FSP automatically enforces “SameSequence” for
all operations for a job–FSP with no idle time requirement between any operations for a job. To
transform the FSP into an NW-FSP, we only need to enforce the no-wait restriction in addition to
avoiding type-1 overlapping.

3.5.1. MIP model
The MIP model for the NW-FSP with Cmax objective function (MIPNW-FSP) is as follows:

minimize Cmax, (MIPNW-FSP)
subject to Constraints (6) and (8) - (12),

cji = cji−1 + Pji ∀j ∈ J , i ∈ I \ 1. (25)

Constraint (25) dictates that operations for a job are carried out with no idle time between stages.

3.5.2. CP model
The CP model for the NW-FSP with Cmax objective function is detailed below:

minimize Cmax, (CPNW-FSP)
subject to Constraints (13), (18), and (22),

EndAtStart
(
Taskji, Taskji−1

)
∀j ∈ J , i ∈ I \ 1. (26)

The global constraint “EndAtStart” in constraint set (26) ensures that all operations for a job are
executed uninterruptedly from the first stage to the last.

3.6. Sequence-Dependent Setup Time FSP (SDST-FSP)
All previous models only consider the processing times of jobs on machines, Pji. The SDST-FSP

is an interesting variation in which a setup operation is required before executing an operation for a
job on a machine. Furthermore, the length of this setup operation depends on the sequence of jobs,
Sjj′i. We optimize this problem with the Cmax objective function.

3.6.1. MIP model
We formulated the previous sequencing models using the Manne-based modeling approach

as we did not require knowledge of the immediate predecessor and successor of a job. With
the inclusion of sequence-dependent setup times, we need to use the sequence-based approach
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to formulate the problem. The number of binary sequencing variables is |J |2. To differentiate
between the sequencing variables, we use binary sequencing variable zjj′ ∈ {0, 1} | j 6= j′ instead
of xjj′ ∈ {0, 1} | j > j′.This change appears to be insignificant from a mathematical perspective;
however, it drastically influences the formulation and its computational efficiency and solution
effectiveness. Using zjj′ ∈ {0, 1} | j 6= j′, requires the definition of a dummy job 0 as the first job in
the sequence. The MIP with the Cmax objective function for the SDST-FSP is the following:

minimize Cmax, (MIPSDST-FSP)
subject to Constraints (7), (10), and (11),∑

j′∈{0,J}\j
zjj′ = 1 ∀j ∈ J , (27)

∑
j∈J\j′

zjj′ ≤ 1 ∀j′ ∈ J , (28)

∑
j∈J

zj0 = 1, (29)

cji ≥ cj′i + Pji + Sjj′i −M(1− zjj′) ∀i ∈ I, j, j′ ∈ J : j 6= j′, (30)
zjj′ ∈ {0, 1} ∀j, j′ ∈ J : j 6= j′. (31)

Constraints (27), (28) and (29) determine the sequence of jobs where each job follows exactly one
job by constraint (27) and precedes at most one job by constraint (28). The last job in the sequence
does not precede any job. The dummy job is the only job that definitely precedes one job by
constraint (29). Constraints (30) avoid overlapping type-2. Specifically, these constraints ensure that
the completion time of the newly arrived job j at machine i is greater than that of the incumbent
job j′, plus the setup time that is performed after job j′ for job j on machine i (i.e., Sjj′i), plus the
processing time of job j on machine i, Pji.

3.6.2. CP model
The CP with the Cmax objective function for the SDST-FSP is now defined as:

minimize Cmax, (CPSDST-FSP)
subject to Constraints (13), (14), and (16) - (18),

NoOverlap
(
Taskji : j ∈ J , Si

)
∀i ∈ I. (32)

Si is the |J | × |J | matrix of setup times at stage i. We need to convert interval variables
into sequence variables so as to consider setups and type-2 overlap using the global constraint
“NoOverlap”.

3.7. Hybrid FSP (H-FSP)
The hybrid flow shop scheduling problem (H-FSP) is a significant extension of the FSPs in that

we have a different shop floor layout. Specifically, we may have more than one machine at each stage.
Note that we consider functionally identical machines with the same processing performance, i.e.,
each operation for a job can be processed by any machine at any stage with the same processing time.
To accommodate such a change in resource (machine) arrangements on the shop floor, we require
defining assignment variables to decide which machine at each stage processes a job. Therefore, the
H-FSP is a joint assignment/sequencing problem unlike the previous sequencing-only problems.
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3.7.1. MIP model
To assign each job j to one of the machines k at stage i, we use binary assignment variables

wjik ∈ {0, 1}. For any set of jobs assigned to any machine at each stage, we ensure that no
overlapping occurs using variables xjj′i ∈ {0, 1}. The MIP model for the H-FSP with the Cmax
objective function is as follows:

minimize Cmax, (MIPH-FSP)
subject to Constraints (6), (7), (10), and (11),∑

k∈Mi

wjik = 1 ∀j ∈ J , i ∈ I, (33)

cji ≥ cj′i + Pji −M(3− xjj′i − wjik − wj′ik) ∀i ∈ I, k ∈Mi, j, j
′ ∈ J : j > j′, (34)

cj′i ≥ cji + Pj′i −M(2 + xjj′i − wjik − wj′ik) ∀i ∈ I, k ∈Mi, j, j
′ ∈ J : j > j′, (35)

wjik, xjj′i ∈ {0, 1} ∀i ∈ I, k ∈ Ki, j, j
′ ∈ J : j > j′. (36)

Constraints (33) ensure every job is assigned to exactly one machine at each stage. Constraints (34)
and (35) ensure that there are no type-1 and type-2 overlaps, respectively. This model needs
|J |2−|J |

2 × |I| binary sequencing variables and |J | ×
∑

i |Mi| binary assignment variables.

3.7.2. CP model
We initially formulated the H-FSP using global constraint “Alternative” and “NoOverlap”

(see Appendix A). Such a formulation yielded poor performance due to a high number of assignment
variables. To achieve better performance for the CP model for the H-FSP, one could exploit the
special structure within the H-FSP to circumvent the complexity associated with the optimization
of assignment decisions and develop a model that is more computationally efficient than some of
the pure scheduling problems (see the seminal work of (Laborie et al., 2018) on this matter). We
used the global constraint “Pulse” which is widely used in the formulation of cumulative scheduling
problems.10 This CP model for the H-FSP with the Cmax objective function is as follows:

minimize Cmax, (CPH-FSP)
subject to Constraints (13), (14) and (18),∑

j∈J
Pulse(Taskji, 1) ≤ |Mi| ∀i ∈ I. (37)

In constraint sets (37), we use function“Pulse” to limit the cardinality of simultaneous jobs being
processed at any stage of H-FSP to the number of identical machines in each stage.

3.8. Distributed FSP (D-FSP)
The distributed flow shop (D-FSP) generalizes the FSP to multiple independent processing lines

or factories where each one of them has an identical number of machines in series (i.e., an FSP).
Each job is to be assigned to one of these processing lines and processed at different stages on
that line. Once assigned, jobs cannot change their processing line. That is, once the job-to-line
assignment decision is made, constraints to avoid the type-2 overlap among jobs assigned to different
processing lines are no longer required.

10As stated in the contribution, we had no intention of studying cumulative scheduling problems. However, since
the H-FSP can be efficiently modeled using advances made in the cumulative scheduling literature, we formulated
H-FSP as if all machines in each stage i function as a super machine with a cumulative capacity of processing |Mi|
jobs at any point of time.
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3.8.1. MIP model
We use the binary assignment variables qjf ∈ {0, 1} to assign each job j to processing line f .

The MIP model for the D-FSP is as follows:

minimize Cmax, (MIPD-FSP)
subject to Constraints (6) and (7) and (10) - (12),∑

f∈F
qjf = 1 ∀j ∈ J , (38)

cji ≥ cj′i + Pji −M(3− xjj′ − qjf − qj′f ) ∀i ∈ I, f ∈ F , j, j′ ∈ J : j > j′, (39)
cj′i ≥ cji + Pj′i −M(2 + xjj′ − qjf − qj′f ) ∀i ∈ I, f ∈ F , j, j′ ∈ J : j > j′, (40)
qjf ∈ {0, 1} ∀i ∈ I, f ∈ F . (41)

Constraint (38) assigns each job to exactly one of the existing processing lines. Constraints (39)
and (40) avoid type-2 overlapping for the jobs assigned to the same processing line. This model
needs |J |

2−|J |
2 binary sequencing variables and |J | × |F| binary assignment variables.

3.8.2. CP model
We develop the CP model for the D-FSP (CPD-FSP) as follows:

minimize Cmax, (CPD-FSP)
subject to Constraints (14) and (18),

Task∗jif = IntervalVar
(
Pji,Optional

)
j ∈ J , i ∈ I, f ∈ F , (42)

PresenceOf
(
Task∗j1f

)
= PresenceOf

(
Task∗jif

)
∀j ∈ J , i ∈ I \ 1, f ∈ F , (43)

Alternative
(
Taskji, Task

∗
jif : f ∈ F

)
∀j ∈ J , i ∈ I, (44)

SVif = SequenceVar
(
Task∗jif : j ∈ J

)
∀i ∈ I, f ∈ F , (45)

NoOverlap
(
SVif

)
∀i ∈ I, f ∈ F , (46)

SameSequence
(
SVif , SVi−1f

)
∀i ∈ I \ 1, f ∈ F . (47)

Constraint (42) defines one interval variable for each operation at each stage. Constraint (43) ensures
that if a job is assigned to a line, all its operations are processed on that line and constraint (44)
assigns one line to each job.

3.9. Job Shop Problem (JSP)
So far we have discussed flow shop variants in that jobs and machines have common characteristics:

(i) all machines are disposed in series and (ii) all jobs have the same (linear) processing route,
requiring the service of all these machines in the same order. We now discuss another widely-
occurring manufacturing shop floor setting—the job shop scheduling problem (JSP)—with different
characteristics. Machines in JSPs are not necessarily disposed serially and can be laid out according
to the machining requirements of jobs. Unlike jobs with an equal number of operations on each
processing line in flow shops, the JSP processes jobs with a varying number of operations and
machining requirements. Thus, the processing route of each job might be unique. In FSPs, the
stage before stage i is always stage i− 1, whereas, in JSPs, it can be any of the other stages. Let i′
indicate the stage before stage i in the processing route of a given job (which is given as input data).
Therefore, both MIP and CP models require modifications to accommodate such non-ordered sets
of stages in the JSP. To avoid type-1 overlapping, we replace i− 1 with i′.
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Table 4: Additional notation for the F-JSP model

Sets:

Kj Set of operations of job j, k ∈ Kj

I Set of machines, i ∈ I
Ijk Set of eligible machines for operation Ojk

Parameters:

Pjki The processing times of operation Ojk on machine i

3.9.1. MIP model
The Manne-based MIP for the JSP (MIPJSP) as proposed in Ku and Beck (2016)11 is as follows:

minimize Cmax, (MIPJSP)
subject to Constraints (6), (10), (11), (19), and (21),

cji ≥ cji′ + Pji ∀j ∈ J , i ∈ I. (48)

Constraints (48) respects the processing route of a job. Note that i′ denotes the stage before stage i
in the job j’ processing route. This model needs |J |

2−|J |
2 × |I| binary sequencing variables.12

3.9.2. CP model
The CP for the JSP (CPJSP) is as follows:

minimize Cmax, (CPJSP)
subject to Constraints (13), (18), and (22),

EndBeforeStart
(
Taskji, Taskji′

)
∀j ∈ J , i ∈ I. (49)

3.10. Flexible JSP (F-JSP)
In the F-JSP, each operation of a job can be processed by one of the eligible machines for that

operation. A such, the F-JSP entails making two decisions: assignment and sequencing. Once
operations are assigned to each machine, the sequence of the assigned operations is optimally
determined. Table 4 and 5 show the notation and decision variables used in our MIP F-JSP model,
respectively.

3.10.1. MIP model
The Manne-based MIP model that we present for the F-JSP (MIPF-JSP) is due to Roshanaei

et al. (2013) and is as follows:

min Cmax (MIPF-JSP)

11For notational consistency, we presented the model with completion times of operations rather than their starting
times.

12Readers are refereed to the work of Ku and Beck (2016) for rigorous comparison among time-based, position-based,
sequenced-based, and Manned-based MIP models for JSP using Gurobi, CPLEX, and SCIP. In this paper, the authors
show that Manne-based model is superior to all other MIP models.
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Table 5: Decision variables used in the MIP model for F-JSP.

Sequencing

xjkj′k′ 1 if the kth operation of job j is processed after the k′th operation
of job j′, 0 otherwise (j > j′)

Scheduling

cjk The completion time of the kth operation of job j

Assignment

zjki 1 if the kth operation of job j is processed by machine i, 0 otherwise

s.t.
∑

i∈Ijk

zjki = 1 ∀j ∈ J , k ∈ Kj (50)

cjk ≥ cjk−1 +
∑

i∈Ijk

Pjkizjki ∀j ∈ J , k ∈ Kj (51)

cjk ≥ cj′k′ + Pjki − V (3− xjkj′k′ − zjki − zj′k′i)∀j > j′ ∈ J , k ∈ Kj , k
′ ∈ Kj′ , i ∈ Ijk ∩ Ij′k′

(52)
cj′k′ ≥ cjk + Pj′k′i − V (2 + xjkj′k′ − zjki − zj′k′i) ∀j > j′ ∈ J , k ∈ Kj , k

′ ∈ Kj′ , i ∈ Ijk ∩ Ij′k′

(53)
Cmax ≥ cjk ∀j ∈ J , k ∈ Kj (54)
cjk ≥ 0 ∀j ∈ J , k ∈ Ij (55)
xjkj′k′ , zjki ∈ {0, 1} ∀j > j′ ∈ J , k ∈ Kj , k

′ ∈ Kj′ , i ∈ I (56)

Constraints (50) assign each operation to an eligible machine. Constraints (51) ensure that there is no
overlap in the starting times of operations of a job. Constraints (52) and (53) ensure that operations
of different jobs assigned to the same machine will not overlap. Constraints (54) calculate makespan,
which corresponds to the maximum completion time of each individual machine. Constraints (55)
and (56) define the nature of decision variables.

We cannot provide a precise parametric formula for the required number of variables for F-JSP
as it depends on the number of operations of different jobs and the flexibility rate of machines.

3.10.2. CP model
The CP model that we present for the F-JSP (CPF-JSP) is due to Naderi and Roshanaei (2021)

and is as follows:

minimize Cmax

subject to Taskjki = IntervalVar
(
Pjki,Optional

)
∀j ∈ J , k ∈ Kj , i ∈ Ijk (57)

Alternative
(
Task∗jk, {Taskjki : i ∈ Ijk}

)
∀j ∈ J , k ∈ Kj (58)

EndBeforeStart
(
Taskjk−1, Taskjk

)
∀j ∈ J , k ∈ Kj (59)

NoOverlap
(
Taskjki : j ∈ J , k ∈ Kj |i ∈ Ijk

)
∀i ∈ I (60)

Cmax = max
j∈J

(
EndOf(Task∗j|Kj |)

)
(61)
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Constraints (57) define interval variables, one for each operation of a job on each eligible machine.
The duration of each interval variable is equal to the processing time of that operation on that
machine, Pjki. The definition of other constraints and variables is clear from their names and one
can easily contrast them with those of the MIP ones.

3.11. Open Shop Problem (OSP)
The open shop scheduling problem (OSP) is a relaxed variant of the JSP in that there is no

technical precedence among the operations for a job. As long as all operations for a job are processed,
irrespective of their sequence, the job is considered completed. With such a relaxation in technical
precedence among operations for a job, the processing route of a job turns into a decision variable,
i.e., the processing route of each job is determined during the optimization run. Therefore, there
are two sequencing decisions: the order of operations for different jobs at each stage and the order
of operations for a job. Such a change requires modifications to type-1 non-overlapping constraints.
Specifically, type-1 non-overlapping constraints will resemble type-2 non-overlapping constraints.

3.11.1. MIP model
In addition to type-2 non-overlapping constraints that require binary sequencing variables

xijj′ ∈ {0, 1}, we define a new sequencing variable hjii′ ∈ {0, 1} to enforce type-1 non-overlapping
constraints as disjunctive constraints (62) and (63) as follows:

minimize Cmax, (MIPOSP)
subject to Constraints (6), (10), (11), (19), and (20),

cji ≥ cji′ + Pji −M(1− hjii′) ∀j ∈ J , i, i′ ∈ I : i > i′, (62)
cji′ ≥ cji + Pji′ −M(hjii′) ∀j ∈ J , i, i′ ∈ I : i > i′, (63)
hjii′ , xijj′ ∈ {0, 1} ∀j ∈ J , i, i′ ∈ I : i > i′. (64)

This model needs |J |
2−|J |
2 × |I|+ |I|2−|I|

2 × |J | binary sequencing variables.

3.11.2. CP model
We require two “NoOverlap” global constraints for type-1 and type-2 non-overlapping constraints:

minimize Cmax, (CPOSP)
subject to Constraints (13), (18), and (22),

NoOverlap
(
Taskji : i ∈ I

)
∀j ∈ J . (65)

3.12. Parallel Machine Scheduling Problem (PMSP)
All previous shop floor scheduling models that we presented had multiple operations per job.

In the parallel machine scheduling problem (PMSP), we schedule a set of single-operation jobs
on multiple machines that are disposed in parallel. We minimize Cmax. Since we are scheduling
single-operation jobs, we do not need to include sequencing variables and constraints and we thus
can calculate the Cmax by only assignment variables. In the PMSP, we simply find the Cmax by
summing over the processing times of the jobs assigned to each machine. Unlike the previous models,
the PMSP is a pure assignment problem.
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3.12.1. MIP model
We use binary assignment variables yji ∈ {0, 1} to assign each job j to a machine i. The MIP

model for the PMSP is as follows:

minimize Cmax (MIPPMSP)
subject to

∑
i∈M

yji = 1 ∀j ∈ J , (66)

Cmax ≥
∑
j∈J

Pjiyji ∀i ∈M, (67)

yji ∈ {0, 1} ∀j ∈ J , ∀i ∈M. (68)

The MIP model needs |J | × |M| binary assignment variables.

3.12.2. Constraint programming model
There are two approaches to formulate the PMSP, one interval or integer. In the case of the

interval approach, we define |M| optional interval variables for each job, one on each machine. Then
“NoOverlap” and “Alternative”. In the integer approach, we define one integer variable for each job
that can take a value between 1 to |M| indicating the machine to which that job is assigned. Then,
Cmax equals the maximal sum of processing times of jobs assigned to each machine. Note that in
PMSP, the sequence of jobs on each machine does not impact makespan (all sequences have the
same makespan). We tested both approaches and realized the integer approach outperforms the
interval approach significantly. The CP model for the PMSP is as follows:

minimize Cmax (CPPMSP)
subject to Xj = IntegerVar

(
1, |M|

)
j ∈ J , (69)

Cmax = max
(j)

( ∑
i∈M

Pji(Xj == i)
)
. (70)

|M|Cmax ≥
∑
j∈J

Element
(
[Pj1, Pj2, ..., Pj|M|], Xj

)
(71)

Constraints (69) define an integer variable for each job. Constraints (70) calculate makespan.
Constraints (71) are also a lower bound for makespan. “Element” is a function that returns an
element of a given array indexed.

4. Experimental evaluation

Testing all the aforementioned models is a major undertaking. For the tests we use an OpenStack
virtualization platform supported by several blade servers, each one with two 18-core Intel Xeon
Gold 5220 processors running at 2.2 GHz. and 384 GBytes of RAM. In this cluster, we run hundreds
of virtual machines with 4 virtual processors and 16 GBytes of RAM memory for each. The virtual
machines run Windows 10 Enterprise 64 bits. This allows for a massive parallelization of the
experimental load, which despite the resources, took several weeks to conclude. We program the
models in Python 3.8.10 linked with IBM ILOG CPLEX 20.1 and IBM ILOG CP Optimizer 20.1
using concert programming technology. As for Gurobi, we have employed version 9.1.2. The goal
that we seek to achieve with these experiments is to ascertain which of the MIP and CP models
performs better for each scheduling problem that we introduced and modeled in the previous section.
To this end, we conduct experiments on existing benchmark instances from the literature for each
of the problems considered. We note that to keep the findings general, we conduct the comparison
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using default settings of solvers. We make no attempts in influencing the search parameters of these
solvers and we restrict the comparison to the default setting of these solvers—a decision that is
likely adopted by a majority of researchers comparing MIP and CP technology. Specifically, we
consider a total of 6,623 instances. The maximum amount of CPU time given for each model is
3,600 seconds.

We use two different performance measures. The first measure is the optimality gap (Gap) of
the integer solution (upper bound) obtained by these models. The optimality gap captures the
deviation of the best solution found by each model in relation to the best bound obtained from its
LP relaxation (lower bound). We note that the optimality gap of both MIP and CP models on any
problem instance is provided by the CPLEX and CP Optimizer 20.1 and we make no calculation
for the optimality gap.13 The second measure is the Relative Percentage Deviation (RPD). Unlike
the optimality gap, the RPD compares the relative distance of the best solution for each model to
that of the best-known solution in the literature.14 Note that the gap we provide is based on the
difference between the upper bound and lower bound of each of the CP and MIP models, but the
RPD analysis encompasses the distance between the best solution for the tested models with the
best-known solution from the literature. It has to be noted that some models might provide worse
optimality gaps, but the quality of their integer solutions might be better; in any practical setting,
it is the integer solution that is used for scheduling and not a better bound (lower bound given by
the LP relaxation in mathematical programming solvers).

We provide the formula for the RPD and Gap as follows:

RPD =
(

Int. Sol.−Best Int. Sol.
Best Int. Sol.

)
× 100, Gap =

(
Upper Bound−Lower bound

Upper bound

)
× 100.

4.1. Benchmarks and Experimental Plans
In this section, we explain the sources from which we have obtained our benchmarks. We

also elaborate on our plan for comparing the performances of different solvers for our scheduling
problems.

4.1.1. Benchmarks
We make use of many famous benchmarks from the literature. Taillard benchmarks (Taillard, 1993)

have been widely used to compare the performance of algorithms developed for basic scheduling
problems: flow shops, job shops and open shops over the past three decades.15 However, this
benchmark has almost been solved, where most instances have either known optimal solutions or
upper bounds that are very close to lower bounds. Using this benchmark is not advisable as we
observe very small differences between the tested models. Vallada et al. (2008) proposed a larger and
much more difficult set of 240 instances. Therefore, for the FSP we use the original 120 instances of
Taillard plus these harder 240 instances for a total of 360 instances. These are used for most tested
flow shop problems in this paper (the permutation flow shop, non-permutation flow shop, no-wait
flow shop and TCT flow shop). We also use 480 Taillard-based instances by Ruiz et al. (2005) for
the SDST flow shop, 600 Taillard-based instances by Naderi and Ruiz (2010) for the distributed flow
shop, 1,440 instances by Pan et al. (2017) for the hybrid flow shop and 540 instances by Vallada
et al. (2008) for total tardiness flow shop. As for the parallel-machine problem, we use benchmarks
of Fanjul-Peyro and Ruiz (2010) that include 1,400 instances. There are several benchmarks for

13In the case of CP Optimizer, the lower bound is obtained in different ways, not only the LP relaxation (see Vilim
et al., 2015).

14We have provided our found best solutions for each problem as an spreadsheet available at http://soa.iti.es/
files/Results_22_9_2021.xlsx.

15This benchmark has been cited in excess of 2,580+ times (at the time of writing this paper).
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job shops in the literature, but compared to the previous ones they have fewer instances each,
so we amalgamate all of them and consider a total of 237 instances. For the F-JSP, we use nine
benchmarks for a total of 289 instances that we have gathered from different studies in the literature
(see details in Naderi and Roshanaei, 2021). Most instances in the F-JSP literature are considered
small instances given the advances made to computing technology and off-the-shelf commercial
solvers over the past decade. However, the new 96 F-JSP instances of Naderi and Roshanaei (2021),
denoted by BV, are really challenging and constitute the largest benchmark in the F-JSP literature
in terms of the number of instances and the size of jobs and machines considered. For the open
shop scheduling problem, we use three benchmarks for a total of 192 instances. Table 6 summarizes
the standard benchmarks for the problems studied in this paper and their size ranges.

Table 6: Datasets for scheduling problems.

Problem Dataset Symbol # instances Instance sizes

|J | |I|

Flow shop (FSP)
Non-permutation flow shop (N-FSP) Taillard (1993) TFS 120 20-500 5-20
No-wait flow shop (NW-FSP) Vallada et al. (2015) VRF 240 100-800 20-60
TCT flow shop* (TCT-FSP)

SDST flow shop* (SDST-FSP) Ruiz et al. (2005) RMA 480 20-500 5-20
Distributed flow shop* (D-FSP) Naderi and Ruiz (2010) NR 600 20-500 5-20
Hybrid flow shop (H-FSP) Pan et al. (2017) PRA 1440 50-200 5-10
Total tardiness flow shop (TT-FSP) Vallada et al. (2008) VRM 540 50-350 10-50

Parallel machine (PMSP) Fanjul-Peyro and Ruiz (2010) FR 1400 100-1000 5-20

Job shops (JSP) Demirkol et al. (1998) DUM 80 20-50 15-20
Taillard (1993) TJS 80 15-100 15-20
Lawrence (1984) LA 40 10-30 5-15
Applegate and Cook (1991) ORB 10 10 10
Storer et al. (1992) SWV 20 20-50 10-15
Yamada and Nakano (1992) YN 4 20 20
Fattahi et al. (2007) FMJ 3 6-20 5-10

Flexible Job shops (F-JSP) Brandimarte (1993) Brand 10 10-20 4-15
Hurink et al. (1994) data-la 129 6-30 5-15
Naderi and Roshanaei (2021) BV 96 30-100 10-20
Dauzère-Pérès and Paulli (1997) D-Press 18 10-20 5-10
Others Others 36 4-20 5-18

Open shops (OSP) Taillard (1993) TOS 60 5-20 5-20
Brucker et al. (1997) BHJ 52 3-8 3-8
Guéret and Prins (1999) GP 80 3-10 3-10

* Based on Taillard (1993)

4.1.2. Experimental plans
In this section, we follow three objectives. First, we compare the performances of state-of-the-art

MIP solvers, CPLEX 20.1 and Gurobi 9.1.2, to ascertain which MIP solver is more suitable for
solving our problems. Second, we compare the performance of the best MIP solver with that of the
CP Optimizer 20.1 to ascertain which solver is universally best suited for our scheduling problems.
Third, once such comparisons were made, we analyze the performance of the best MIP solver and
the CP Optimizer on each benchmark. The basic problem in this study is the permutation flow shop
with makespan minimization. We compare the CP and MIP models using five different performance
criteria: (i) problem characteristics, (ii) objective function, (iii) decision variables, (iv) problem
size, and (v) performance measures. Analysis of each one of these criteria provides unique insights
into the performance of the CP and MIP models. Below, we provide a definition for each of these
criteria:
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1. Problem characteristics: We consider the basic flow shop problem and two extensions in
which the models share the same type of decision variables: the permutation flow shop (FSP),
no-wait flow shop (NW-FSP), and SDST flow shop (SDST-FSP).

2. Objective functions: We compare the flow shop problem with three different objectives:
makespan (FSP), total completion time (TCT-FSP), and total tardiness (TT-FSP).

3. Problem decisions: There are two main decisions in scheduling problems: sequencing and
assignment. We consider seven essentially different scheduling problems that encompass
different decisions, ranging from pure sequencing (OSP) to a mix of the two decisions (e.g.,
H-FSP), to pure assignment (PMSP).

4. Problem size: We also analyze the convergence of the models over different problem sizes of
basic flow shop problems. We consider the number of jobs and machines versus the studied
performance measures.

5. Bounds: We analyze performance measures and break them down into two parts: upper and
lower bound distance from the best-known bounds.

4.2. Results
4.2.1. Comparison between MIP solvers

We compare the performance of CPLEX 20.1 and Gurobi 9.1.2 in terms of their found number
of feasible and optimal solutions and their average optimality gaps on each scheduling problem (see
Table 7). The obtained results on 6,623 experiments manifestly demonstrate that CPLEX 20.1 is
vastly superior to Gurobi 9.1.2 on almost all the considered performance measures. Specifically,
CPLEX 20.1 and Gurobi 9.1.2 find feasible solutions in 72.83% (4,824 out of 6,623) and 59.91%
(3,968 out of 6,623) of instances, solves 16.50% (1,093 out of 6,623) and 16.21% (1,074 out of 6,623)
of instances to optimality, and achieve a weighted grand average optimality gap of 46.00% and
36.06% on their solved instances, respectively. It might appear unreasonable that we state that
the weighted grand average optimality gap of 46.00% obtained by CPLEX 20.1 is better than the
lower weighted grand average optimality of 36.09% obtained by Gurobi 9.1.2. The reason for such a
statement is that CPLEX finds feasible solutions for much larger instances of different scheduling
problems at the expense of a higher average optimality gap (856 more difficult solved instances).
On similarly solved instances, Gurobi trivially outperforms CPLEX on the weighted grand average
optimality gap at 35.10% versus that of CPLEX at 35.78%—0.68% improvement, which may be
attributable to either stronger LP relaxation or better integer solutions obtained by Gurobi.16 In
view of the provided analysis and in the grand scheme of things, we can conclude that CPLEX 20.1
is better suited for solving our scheduling problems than Gurobi 9.1.2.

In the previous paragraph, we concluded that CPLEX 20.1 is generally a better candidate for
solving our scheduling problems. However, care must be taken when these MIP solvers are to be
deployed for solving each of our scheduling problems as their performances are highly variable for
each scheduling problem. Other than TT-FSP and D-FJSP that Gurobi 9.1.2 is marginally superior
to CPLEX 20.1 in terms of feasibility and average optimality gap, researchers and practitioners
can safely use CPLEX 20.1 for solving other scheduling problems. If we want to single out one
scheduling problem that must not be solved by Gurobi 9.1.2, we can allude to H-FSP in that
Gurobi finds feasible solutions for only 32.5% of instances. On the same dataset, CPLEX 20.1 finds
feasible solutions for 68.5% of instances—twice as many as feasible solutions than that of Gurobi.
PMSP is the only scheduling problem that both CPLEX and Gurobi can efficiently solve with a

16We compare GAPs and RPDs of these solvers and determine on which instances, the performance is related to
stronger LP relaxation or better integer solutions.
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Table 7: Comparison of MIP performances solved via CPLEX 20.1 and Gurobi 9.1.2. Percentages reported under the
gap column show the average optimality gap of solved instances and percentages included in parentheses () under the
gap column show the average optimality gaps of MIP solvers on similarly solved instances; bold: Best performance
under each category. We break ties by giving priority to feasibility. That is, on each problem type, we use bold for the
MIP solver that has the highest feasibility rate even if its average optimality gap is higher; underlined numbers:
One MIP solver outperforms the other MIP solver by at least 10% on any performance measure.

Problem
MIP solved via CPLEX 20.1 MIP solved via Gurobi 9.1.2

# Status (%) Gap
(%)

Status (%) Gap
(%)Feasible Optimal Feasible Optimal

FSP 360 28.9 0.0 64.62 (60.71) 23.3 0.0 62.85 (62.85)
N-FSP 360 50.8 0.0 76.92 (69.12) 24.2 0.0 74.78 (74.78)
NW-FSP 360 71.7 0.0 84.56 (91.19) 43.3 0.0 77.68 (91.11)
TCT-FSP 360 34.2 0.0 64.22 (59.33) 21.7 0.0 59.04 (59.04)
TT-FSP 540 32.2 0.0 92.42 (91.19) 35.0 0.0 92.88 (91.11)
SDST-FSP 480 91.0 0.0 84.34 (81.97) 74.8 0.0 80.43 (80.43)
D-FSP 600 73.8 1.5 42.27 (41.11) 75.5 1.5 43.26 (40.36)
H-FSP 1440 68.5 0.0 76.92 (62.53) 32.5 0.0 59.59 (59.59)
F-JSP 289 97.6 11.42 42.32 (38.09) 91.0 22.2 34.3 (34.10)
JSP 242 100.0 5.79 41.14 (41.14) 100.0 12.0 41.2 (41.24)
OSP 192 100.0 66.67 8.93 (8.93) 100.0 78.1 9.13 (9.13)
PMSP 1400 100.0 64.93 0.22 (0.22) 100.0 58.7 0.21 (0.21)
Total 6,623 4,824 1,093 46.00 (35.78) 3,968 1,074 36.09 (35.10)
(%) 72.83 16.50 59.91 16.21

100% solvability rate and average optimality gaps of ≈ 0.20. The interesting observation is that
CPLEX 20.1 has solved more instances of PMSP to optimality (64.93%) than Gurobi 9.1.2 (58.71%),
rendering it as a better option for solving PMSP problems. Another interesting observation is the
superior performance of Gurobi 9.1.2 in finding more optimal solutions for almost all scheduling
problems (other than PMSPs). The excellent performance of Gurobi in proving optimality becomes
more conspicuous on those scheduling problems with more difficult sequencing decisions, i.e., JSP,
OSP, and F-JSP in that the processing route of jobs are mostly non-linear. These two observations
together help MIP practitioners design more efficient MIP-based decomposition techniques like
classical and/or logic-based Benders decomposition techniques based on the interplay between
CPLEX (for solving mostly assignment master problem) and Gurobi (for solving mostly scheduling
problems—see e.g., SDST-PMSP of Tran et al., 2016)—the latter significantly helps with developing
Benders cuts based on quickly obtainable optimal (rather than sub-optimal) solutions that are
indispensable for the design of an exact Benders solution technique.

We have thus far compared the performance of CPLEX and Gurobi based on their number of
found feasible and optimal solutions as well as their average optimality gaps. To conduct a fair (an
apple to apple) comparison, we even compared the average optimality gap of CPLEX and Gurobi on
comparably solved instances of each scheduling problem. However, none of these performance metrics
can provide us with a piece of compelling evidence as to whether CPLEX is superior to Gurobi even
for scheduling problems with comparable average gaps. The reason for this ambiguity is that one of
the MIP solvers may possess a tighter LP relaxation (bound) while the other may obtain better
integer solutions. Assume CPLEX’s LP relaxation and feasible solution for an instance of the FSP
is 150 and 300, resulting in a 50% optimality gap. Similarly, assume Gurobi’s LP relaxation and
feasible solution for the same instance of the FSP is 100 and 200; thus, its optimality gap is also
50%. For the same optimality gap, we can see that Gurobi’s hypothetical solution is preferable for
practical scheduling purposes as it leads to a lower make-span value. To decide which MIP solver
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is more suited for practical purposes, we perform RPD analysis on the integer solutions obtained
by each solver on comparably solved problem instances as well as comparing them to best-known
solutions from other algorithms in the literature (see Table 9).17

4.2.2. Comparison between the best MIP solver versus CP Optimizer
We now compare the performance of the best MIP solver, CPLEX 20.1, with that of the CP

Optimizer 20.1 in terms of their found number of feasible and optimal solutions and their average
optimality gaps on each scheduling problem (see Table 8). The obtained results demonstrably
manifest that CP Optimizer 20.1 is vastly superior to CPLEX 20.1 in terms of finding feasible
solutions and achieving lower optimality gaps on almost all (PMSP excluded) scheduling problems.
Specifically, CPLEX 20.1 and CP Optimizer 20.1 find feasible solutions in 72.83% (4,824 out of
6,623) and 100.00% (6,623 out of 6,623) of instances, solves 16.50% (1,093 out of 6,623) and 11.13%
(737 out of 6,623) of instances to optimality, and achieve a weighted grand average optimality gap
of 46.00% and 27.91% on their solved instances, respectively. The optimality performance of CP
Optimizer is either better or the same as CPLEX 20.1 in all scheduling problems. Note that PMSP
has only assignment variables and it does not have sequencing variables. Since the number of
instances for PMSP is large (1400) and the optimality rate of CPLEX 20.1 is much higher than that
of the CP Optimizer (64.93% versus 4.6%), it inflates the grand optimality rate of CPLEX compared
to that of the CP Optimizer—844 more instances are solved to optimality by CPLEX 20.1 on PMSP
instances. It is interesting to know that the optimality rate of the CP Optimizer is even better than
that of the Gurobi 9.1.2 (excluding PMSP). If we exclude the optimality rate of the PMSP from our
analysis, the CP Optimizer 20.1 is significantly better than CPLEX 20.1 in terms of optimality rate
in that the former finds 672 optima, whereas the latter finds 249 optima. It is noteworthy that in
addition to superior performance in previous performance measures, CP Optimizer 20.1 achieves an
18% (46%− 28% = 18%) lower average optimality gap while it finds feasible solutions for additional
more difficult 1,735 instances of the problem—26.45% higher feasibility rate than CPLEX 20.1. In
view of the provided analysis and the grand scheme of things, we can conclude that CP Optimizer
20.1 is better suited for solving our scheduling problems than CPLEX 20.1.

We now provide a comparative detailed analysis between CPLEX and CP Optimizer. Not only
does CP Optimizer 20.1 solve 100% of instances to feasibility, but also it provides new optima for FSP,
N-FSP, and H-FSP, which could not be achieved by CPLEX 20.1. In terms of the average optimality
gap, CP Optimizer is vastly superior to CPLEX. Specifically, the performance of the CP Optimizer
is drastically better than that of the CPLEX on H-FSP in that CP Optimizer and CPLEX achieve
average optimality gaps of 3.46% and 76.92% on 100% and 68.5% of solved instances of the problem,
respectively—at least 22 times lower average optimality gap by CP Optimizer. On comparably
solved instances of the problem by both solvers, one can allude to the substantial performance
difference between the CP Optimizer and CPLEX on FSP in which the average optimality gap is
60.71% and 3.23%, respectively. The only strength of the CPLEX is in achieving a lower optimality
gap and higher feasibility and optimality rate for PMSP instances. The difference in the average
optimality gap of CPLEX and CP Optimizer on the PMSP instance is around 12%. We note that
this gap is still acceptable from a practical standpoint especially when we know a fraction of this
gap is due to the weaker bound in the CP Optimizer. This analysis provides us with a peice of
compelling evidence that CP Optimizer must be employed as the solver when scheduling problems
have either sequencing or assignment/sequencing variables; otherwise, for pure assignment problems,
CPLEX is a better choice.

17You can find the best-known solutions for each problem instance that we have retrieved from the literature in the
following link: http://soa.iti.es/files/Results_22_9_2021.xlsx.
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Table 8: Comparison of MIP performances on CPLEX and CP Optimizer 20.10. Percentages reported under the gap
column show the average optimality gap of solved instances and percentages included in parentheses () under the gap
column show the average optimality gaps of MIP and CP solvers on similarly solved instances; bold: Best performance
under each category; We break ties by giving priority to feasibility; That is, on each problem type, we use bold for the
MIP solver that has the highest feasibility rate even if its average optimality gap is higher; underlined numbers:
One MIP solver outperforms the other MIP solver by at least 10% on any performance measure.

Problem
MIP solved via CPLEX 20.1 CP solved via CP Optimizer 20.1

# Status (%) Gap
(%)

Status (%) Gap
(%)Feasible Optimal Feasible Optimal

FSP 360 28.9 0.0 64.62 (60.71) 100.0 12.5 10.74 (3.23)
N-FSP 360 50.8 0.0 76.92 (69.12) 100.0 9.0 13.85 (4.69)
NW-FSP 360 71.7 0.0 84.56 (91.19) 100.0 0.0 50.57 (39.75)
TCT-FSP 360 34.2 0.0 64.22 (59.33) 100.0 0.0 46.55 (20.44)
TT-FSP 540 32.2 0.0 92.42 (91.19) 100.0 0.0 91.06 (79.94)
SDST-FSP 480 91.0 0.0 84.34 (81.97) 100.0 1.5 29.64 (27.89)
D-FSP 600 73.8 1.5 42.27 (41.11) 100.0 4.0 48.91 (39.28)
H-FSP 1440 68.5 0.0 76.92 (62.53) 100.0 11.3 3.46 (3.37)
F-JSP 289 97.6 11.42 42.32 (38.09) 100.0 38.4 27.62 (22.68)
JSP 242 100.0 5.79 41.14 (41.14) 100.0 50.8 3.83 (3.83)
OSP 192 100.0 66.67 8.93 (8.93) 100.0 98.4 0.03 (0.03)
PMSP 1400 100.0 64.93 0.22 (0.22) 100.0 4.6 12.52 (12.52)
W. G. Total 6,623 4,824 1,093 46.00 (35.78) 6,623 737 27.91 (23.00)
(%) 72.83 16.50 100.0 11.13

We compare the quality of integer solutions of different models solved via different models+solvers
using previous performance measures along with the popular RPD performance measure (Table
9). RPD allows for the comparison of the quality of integer solutions of each model+solver on
each instance against other models+solvers as well as existing best solutions in the literature. The
calculation of RPD is tricky because some of the models+solvers may not be able to obtain integer
solutions for all instances of a problem. As such, we consider two types of RPDs: (i) RPD over all
solved instances of a problem, denoted by RPD1 and (ii) RPD over comparably solved instances
across different models+solvers, denoted by RPD2. Since the value of RPD may substantially be
impacted by a single poor solution of any model,18 we also report the percentage of best solutions
found by each model+solver on each problem type. The general findings from Table 9 are similar to
the ones obtained in the previous two tables with the difference that CP Optimizer is the best option
for our scheduling problems even in terms of achieving high-quality integer solutions and finding the
highest number of best solutions. Other than PMSP, the CP Optimizer finds highest best solutions
and lowest RPD on all and comparably solved instances of the problem. The interesting observation
is that the quality of integer solutions of the CP Optimizer on PMSP is not as large as its optimality
gap. That is, the CP optimality gap on PMSP is 12.52%, whereas its RPD is 2.3%, more than 10%
lower than its average optimality gap. This observation reveals that if the CP community improves
the bounding mechanism within the CP Optimizer 20.1, it can be used as a standalone solver for
all types of optimization problems, and not only for scheduling problems. The improvement of the

18Consider a model+solver that has found 9 optimal solutions for 10 instances of a problem type. If the objective
function value of the 10th instance is 100 and the optimal solution is 10, the RPD of this solution is 900%, leading to an
average RPD of 90% (900%/100) for that model+solver. This performance appears to be worse than a model+solver
that has achieved a hypothetical RPD of 85% for each instance, resulting in an average RPD of 85%. To avoid
providing misleading insights, we report both measures.
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Table 9: Comparison of CP and MIP solvers in terms of percentage of feasibility (Feas.), optimality (Opt.), best
solutions found (Best), and RPD = ( Int. sol.−Best Int. Sol.

Best Int. Sol. )× 100. We use two RPD measures to ascertain the quality
of integer solutions. RPD1 is calculated over all solved instances by a model and RPD2 is calculated over comparably
solved instances across different solvers; Bold: Best performance under each category; We indicate by bold the RPD1
of those problems whose feasibility percentage is higher even if their value of RPD1 is higher; Best integer solutions
found from the literature can be found in http://soa.iti.es/files/Results_22_9_2021.xlsx; due to lack of best
integer solutions, RPDs of NW-FSP and TCT-FSP are calculated best on the solutions of the models studied in this
paper.

Problem #
CP Optimizer 20.1 CPLEX 20.1 Gurobi 9.1.2

(%) (%) (%)

Feas. Opt. Best RPD1 RPD2 Feas. Opt. Best RPD1 RPD2 Feas. Opt. Best RPD1 RPD2

FSP 360 100 12.5 13.9 7.5 0.7 28.9 0.0 0.6 8.4 4.9 23.3 0.0 0.28 5.2 5.2
N-FSP 360 100 9.4 12.8 7.7 1.6 50.8 0.0 0.00 17.3 14.0 24.2 0.0 0.00 76.3 76.3
NW-FSP 360 100 0.0 2.5 1.4 2.2 50.8 0.0 0.8 23.24 18.51 43.3 0.0 0.8 33.3 23.82
TCT-FSP 360 100 0.0 1.7 1.6 2.1 34.2 0.0 0.6 9.4 7.1 21.7 0.0 0.28 7.3 7.3
TT-FSP 540 100 0.0 12.6 24.3 13.3 32.2 0.0 0.00 32.5 31.3 35.5 0.0 0.56 35.2 33.1
SDST-FSP 480 100 1.5 1.5 5.2 4.0 91.0 0.0 0.00 13.5 11.7 74.8 0.0 0.21 12.6 12.6
D-FSP 600 100 4.0 12.0 4.2 2.0 73.8 1.5 7.00 14.6 11.1 75.5 0.0 5.5 31.4 8.8
H-FSP 1440 100 11.3 11.9 40.4 3.2 68.5 0.0 0.00 141.3 46.6 32.5 0.0 0.00 33.9 33.9
JSP 242 100 50.8 52.5 1.6 1.6 100 5.8 21.1 60.0 60.0 91.0 22.2 21.5 13.0 13.0
F-JSP 289 100 38.4 63.3 1.1 0.8 97.6 11.4 24.9 245.6 186.2 100 12.0 27.3 71.6 70.1
OSP 192 100 98.4 99.0 0.0 0.0 100 66.7 88.5 0.5 0.5 100 78.1 90.1 0.6 0.6
PMSP 1400 100 4.6 22.0 2.3 2.3 100 64.9 94.8 -0.11 -0.11 100 58.7 98.3 -0.14 -0.14

bounding mechanism also enhances the fathoming/pruning/propagation mechanism within the CP
Optimizer culminating in solutions whose optimality can be verified much more swiftly. It is through
this analysis that we recommend CP Optimizer 20.1 as the best candidate for our select scheduling
problems. The performance of the MIP+CPLEX and MIP+Gurobi is highly variable on different
scheduling problem types. As such, we cannot strongly conclude that one of these software is superior
to another in terms of RPD; as such, care must be taken when choosing either CPLEX or Gurobi
for different scheduling problems. However, we continue the remainder of our analysis based on the
performance of the MIP+CPLEX due to its ability to achieve better feasibility and optimality rates.

4.3. Detailed performance evaluation
4.3.1. Impact of problem characteristics: flow shop (FSP), nowait-FSP (NW-FSP), and sequence-

dependent setup times FSP (SDST-FSP)
We report and analyze the detailed average optimality gap, RPD, and the number of feasible

and optimal solutions found by the best MIP and CP model on different benchmarks of similar
problem types in terms of sequencing decisions (Table 10). Due to extreme performance variability,
it is difficult to fairly compare these models in terms of the average optimality gap and RPD as any
comparison will do injustice to the CP models. Despite this performance difference, we continue
our analysis and show that the CP model is able to find integer feasible and optimal solutions for
the FSP in 100% (120 out of 120) and 37.5% of problem instances (45 out of 120) for the TFS
instances, respectively. These percentages are 75.8% (91 out of 120) and 0% (0 out of 120) for the
MIP+CPLEX model, respectively. While capable of solving all instances of the TFS benchmark,
the CP model yields an average optimality gap of 3.6%. The CP model maintains its superior
performance for the VFR benchmark that consists of much larger instances, while the performance
of the MIP+CPLEX deteriorates to a level of non-performance. Specifically, the CP model finds
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Table 10: Comparison of average results for flow shop problems: Problem characteristics. Bold: Best performance
under each category. We break ties based on feasibility rate; The RPD values reported for NW-FSP on VFR benchmark
have been calculated based only on the best integer solutions of the three models studied in this paper. RPDs have
been calculated over all solved instances of the problem.

Problem Dataset #
CP Optimizer 20.1 CPLEX 20.1

(%) Time (%) Time
Feas. Opt. Gap RPD Feas. Opt. Gap RPD

FSP TFS 120 100 37.5 3.6 1.8 2,413 75.8 0.0 62.3 6.3 3,600
VFR 240 100 0.0 14.3 10.3 3,600 5.4 0.0 79.2 23.8 3,600

NW-FSP TFS 120 100 0.0 33.7 4.1 3,600 100.0 0.0 75.4 17.9 3,600
VFR 240 100 0.0 59.0 0.0 3,600 57.5 0.0 92.5 23.2 3,600

SDST-FSP RMA 480 100 1.4 29.6 5.2 3,569 91.0 0.0 84.3 13.5 3,600
Feas. and Opt. indicate number of feasible and optimal solutions, respectively. Time in seconds. Gap and RPD in percentage.

integer feasible solutions for 100% (240 out of 240) of the instances in the VFR benchmark, whereas
the MIP+CPLEX model finds integer feasible solutions for only 5.4% (13 out of 240) of the problem
instances. The average optimality gap of these 13 solved instances is at least five times higher
(79.2% versus 14.3%) than that of the CP model that solves all the difficult VFR instances. In
terms of RPD, the CP model is superior to the MIP model on both instances, achieving an average
RPD of 1.8% and 10.3% on TFS and VFR benchmarks, respectively. These percentages for the
MIP model are 6.3% and 23.3%. The substantially superior performance of the CP model (in terms
of average feasibility and optimality rates, optimality gap, and RPD) renders the CP model as the
state-of-the-art exact technique for solving the FSP and can thus be used to solve industrial-scale
permutation FSPs. Of course, we refer to the off-the-shelf exact techniques.

In addition to the FSP, we illustrate the performance of the MIP+CPLEX and CP models on
the NW-FSP and SDST-FSP problems in Table 10. As stated earlier, the only difference between
the FSP and the NW-FSP is the restriction that enforces no idle time must exist between the
completion and starting times of two operations of a job on any two successive machines on the
shop floor. The enforcement of such a restriction results in significantly worse performance measures
for both models, especially for the CP model. The general finding from comparing the performance
of the MIP and CP models for the NW-FSP is largely similar to that of the FSP in that the
CP model demonstrates higher solvability and lower average optimality gaps when compared to
the MIP model. The difference, however, is that the CP average optimality gap in the NW-FSP
substantially increases (compared to its performance in the FSP). The CP average optimality gaps
increase at least 9 times (from 3.6% to 33.7%) and 4 times (from 14.3% to 59.0%) for the TFS
and VFR benchmarks, respectively. Another notable difference is that the MIP model can solve all
instances of the TFS benchmarks. The CP model achieves an average RPD of 4.1% and 0.0% for
TFS and VFR instances, respectively, leaving no room for the MIP models (including MIP+Gurobi)
to compete, specifically on the VFR benchmark, which is considerably more difficult than the TFS
for the NW-FSP. Despite MIP’s absolute worse performance concerning the CP model on NW-FSP,
an interesting observation is that when we make a transition from FSP to NW-FSP, the feasibility
rate of the MIP model improves significantly on both benchmarks. From this analysis, we conclude
strongly that the CP model is the best of-the-shelf exact technique for solving the NW-FSP.

For the SDST-FSP, we use the RMA benchmark, which is based on TFS instances. Again, the
CP model clearly outperforms the MIP model in terms of solvability, average optimality gap, and
average RPD. The CP and MIP models solve 100% and 91% of instances, yielding average optimality
gaps of 29.6% and 84.3%, respectively. The average RPDs of the CP and MIP models are 5.2% and
13.5%, respectively. An interesting observation is that the quality of the integer solutions produced
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Table 11: Comparison of average results for flow shop problems: Problem characteristics. Bold: Best performance
under each category. We break ties based on feasibility rate; The RPD values reported for TCT-FSP on VFR
benchmark have been calculated based only on the best integer solutions of the three models studied in this paper.
RPDs have been calculated over all solved instances of the problem.

Objective Dataset #
CP Optimizer 20.1 CPLEX 20.1

(%) Time (%) Time
Feas. Opt. Gap RPD Feas. Opt. Gap RPD

FSP TFS 120 100 37.5 3.6 1.8 2,413 75.8 0.0 62.3 6.3 3,600
VFR 240 100 0.0 14.3 10.3 3,600 5.4 0.0 79.2 23.8 3,600

TCT-FSP TFS 120 100 0.0 24.0 4.7 3,600 79.2 0.0 63.3 7.3 3,600
VFR 240 100 0.0 57.8 0.0 3,600 11.7 0.0 67.4 13.0 3,600

TT-FSP VRM 540 100 11.9 80.3 24.3 3,191 32.2 0.0 92.4 32.5 3,600
Feas. and Opt. indicate number of feasible and optimal solutions, respectively. Time in seconds. Gap and RPD in percentage.

by the MIP moves closer to that of the CP—the average RPD of the MIP model is now only twice as
large as that of the CP model. We can also see that the consideration of sequence-dependent setup
times deteriorates the CP model’s performance by 26.0% when compared to the FSP (29.6%−3.6%).
Despite this complexity, the performance of the CP model at 29.6% optimality gap is much more
acceptable than that of the MIP model at 84.3%. Again, we can conclude that the CP model is
superior to the MIP model and constitutes the best off-the-shelf exact technique for the SDST-FSP.

4.3.2. Objective function impact: Makespan, Total Completion Time, and Total Tardiness
The results of the MIP and CP models developed for the FSP with different objective functions:

Makespan (FSP), Total Completion Time (TCT) and Total Tardiness (TT) are shown in Table 11.
Using the same datasets as in the FSP, we find that the CP model developed for the TCT-FSP
demonstrates higher solvability and a lower average optimality gap. The TCT objective function
makes the problem substantially more difficult to solve for both models. The CP solves 100% of
instances of both the TFS and VFR benchmarks, whereas these percentages are 79.2% and 11.7%
for the MIP model, respectively. The average optimality gap in the CP model is 24.0% and 57.8%
on TFS and VFR benchmarks, respectively. When solving the TCT-FSP we find that the CP
model can no longer solve any of our instances to optimality, demonstrating the difficulty associated
with solving the TCT-FSP, even though TCT is considered as a completion-time related objective
function similar to makespan. As for the quality of integer solutions, the CP model obtains an
average RPD of 4.7% and 0.0% over 100% of solved instances of TFS and VFR, respectively, whereas
the MIP model yields an average RPD of 7.3% and 13.0%, respectively, on a fraction of solved
instances. We see that a change in the objective function significantly deteriorates the performance
of both models, but it does not change the outcome: the CP model is superior to MIP models. The
conclusion that CP usually performs better on makespan-type objectives versus summation-type
objectives (e.g., TCT) has been known for a long time in the CP community, but the fact that
the CP model is even superior to CPLEX on the most popular FSP benchmarks is a new finding.
Precisely, we seek to highlight and quantify the performance improvement (higher feasibility rate,
lower gap, and lower RPD) that CP offers to the scheduling community through this analysis.

We now address the impact of the TT objective function on the performance of the CP and MIP
models. The inclusion of the TT objective function worsens the average performance of both models
in terms of average optimality gaps, RPD, and solvability. This is by far the worst performance by
our models in any problem variants that we have tested so far. The CP and MIP models achieve
average gaps of 80.3% and 92.4% respectively, and yield average RPD values of 24.3% and 32.5%
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with respect to the best-known integer solutions in the literature respectively. The rate of solvability
of the MIP model with the TT objective function is significantly worse than that of the FSP with
the makespan objective function. This is in contrast to the robust performance of the CP model that
irrespective of the problem type achieves 100% solvability on all problem instances. Further analysis
of individual instances reveals an interesting observation. When the amount of total tardiness is zero
in any instance, the CP model can quickly find the optimal solution (the CP has found 64 optimal
solutions for the TT objective function), but when the optimal solution entails having a positive
amount of tardiness, both models perform quite poorly. The reason for the strong performance of
CP when tardiness is zero stems from the fact that CP relies on constraint propagation and the
propagation of sum expressions like

∑
j∈J

max
{
EndOf(Taskj|I|)−Dj , 0

}
propagates weakly unless

the upper bound of the sum is 0 as in this case, it directly propagates EndOfj <= Dj . When the
upper bound is strictly larger than 0, the slack on the variables gets “diluted” in all the different
terms “j” and propagation becomes weaker. The large average optimality gap in both models
causes the decision-maker to believe that these models are not efficient for solving the TT-FSP;
however, the average RPD of the CP model demonstrates that its performance is 24.3% worse than
the best-known integer feasible solutions in the literature. Note that best integer solutions have
been obtained from different studies that include different algorithms; there is no single study in
the literature that includes all the best integer solutions. As such, an average RPD of 24.3% is
reasonable from a practical perspective given the fact that the CP is compared against the best
ad-hoc algorithms in the literature that were specifically devised for this problem, while our CP
model runs in an off-the-shelf commercial CP solver (CP Optimizer). The conclusion after studying
these three objective functions is that the CP model is consistently better than the MIP model even
on summation-type objective functions that are the Achilles’ heel of CP models. This finding will
culminate possibly in deploying CP models for solving scheduling problems with summation-type
objective functions by many scholars who use MIP as a go-to modeling technology.

4.3.3. Problem decision dimensions: Sequencing and assignment
We proceed to an analysis of the performance of the CP and MIP models under varying scheduling

decisions or dimensions: assignment and sequencing. As discussed earlier, scheduling problems can
range from pure sequencing to pure assignment problems. Table 12 depicts the average gap and
RPD for these models in different scheduling problems: D-FSP, H-FSP, and F-JSP. The general
finding from comparing the performance of the MIP and CP models for these problems is that as
we move away from pure sequencing problems to assignment problems, the performance of the CP
model deteriorates (see Figure 2). This finding however does not apply to the H-FSP in which the
CP’s average optimality gap is 3.5% due to the way we have formulated the CP model. We later
explain this particular case.

We observe an interesting change in the performance of the MIP+CPLEX on both TFS and VFR
benchmarks of the N-FSP in that the rate of feasibility in the MIP model is significantly improved
from 75.8% and 5.4% to 92.5% and 30.0% on TFS and VFR benchmarks, respectively. We did not
expect to see such an improvement in the feasibility rate of the MIP model because optimizing
sequencing decisions in N-FSP is more difficult than those in FSP. Despite this drastic feasibility
rate improvement in the MIP+CPLEX on N-FSP, the CP leaves no room for second-guessing as
to which solver must be used for solving the N-FSP because it finds feasible solutions for 100%
of instances and obtains average optimality gaps of 5.2% and 18.2% on TFS and VFR instances,
respectively.

OSP benchmarks include smaller instances as the OSP has been a challenging problem. Surpris-
ingly, the CP model solves 98.44% of the instances (189 instances out of 192) to optimality with
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Table 12: Average results for scheduling problems with different problem dimensions.

Problems Dataset #
CP Optimizer 20.1 CPLEX 20.1

(%) Time (%) Time
Feas. Opt. Gap RPD Feas. Opt. Gap RPD

OSP TOS 60 100 100 0.0 0.0 1.0 100 68.3 27.8 1.5 2,025
GP 80 100 100 0.0 0.0 3.6 100 100 0.00 0.00 144
BHJ 52 100 98 0.1 0.2 302.8 100 94.2 0.8 1.5 570

JSP TJS 80 100 51.3 2.9 0.9 1,911 100 1.3 44.9 158.7 3,502
DUM 80 100 22.5 6.9 3.34 2,936 100 0.0 51.0 18.9 3,600
LA 40 100 100 0.0 0.0 110 100 17.5 22.3 0.36 2,604
Others 42 100 45.0 3.3 1.1 1,693 100 14.0 33.1 7.1 2,495

FSP TFS 120 100 37.5 3.6 1.8 2,413 75.8 0.0 62.3 6.3 3,600
VFR 240 100 0.0 14.3 10.3 3,600 5.4 0.0 79.2 23.8 3,600

N-FSP TFS 120 100 28.3 5.2 2.6 2,670 92.5 0.0 73.8 14.9 3,600
VFR 240 100 0.0 18.2 10.2 3,600 30.0 0.0 81.8 20.8 3,600

D-FSP NR 600 100 4.2 48.9 4.2 3,502 73.8 2.0 42.3 14.6 3,542

H-FSP PRA 1440 100 11.3 3.5 40.4 3,309 68.5 0.0 76.9 141.3 3,600

F-JSP Brand. 10 100 50.0 7.4 29.9 1,607 100 0.0 32.4 6.09 3,243
data-la 129 100 51.2 16.1 2.7 1,875 100 15.5 26.5 3.9 2,867
D-Peres 18 100 30.5 24.2 30.5 3,206 85.6 0.0 48.9 62.9 3,600
BV 96 100 2.1 55.9 3.2 3,526 92.7 0.0 81.0 759.0 3,600
Others 36 100 100 0.0 0.0 38.0 100 36.0 2.6 0.2 12.6

PMSP FR 1400 100 4.6 12.5 2.3 3,446 100 63.4 0.2 -0.11 1,431

average computation times of 1, 3.6 and 302.8 seconds for the TOS, GP and BHJ benchmarks,
respectively. Comparatively, the MIP solves 128 out of 192 instances to optimality with average
CPU times of 2,025, 144, and 570 seconds for TOS, GP, and BHJ, respectively. For the JSP, the
average optimality gap of the CP model across all 242 instances is just 2.9% and that of the MIP
model is 44.9%. The CP optimally solves 123 instances, whereas the MIP only solves 14 smaller
instances. The results for the JSP are somewhat expected as CP solvers have been finely tuned
to perform robustly on a wide variety of large-scale scheduling problems, and JSP, in particular
(Laborie et al., 2018).

The D-FSP is the first scheduling problem in Table 12 that includes assignments in the form of
assignment of jobs to factories. This decision, one per job, worsens the average gap performance of
the CP model remarkably, by 38.17% (= 48.91%− 10.74%—average gap of FSP in Table ??). Note
that the benchmark NR is also based on the TFS benchmark and hence the comparison between
the FSP and D-FSP is fair. The surprising finding for D-FSP is that the average optimality gap of
CP is almost 5 times higher than its average optimality gap on the FSP; however, its average RPD
is 4.2% compared to that of the FSP at 7.47%. The average RPD of 4.2% indicates that the CP
model is competitive with a plethora of ad-hoc metaheuristic algorithms that have been designed
for D-FSP. If we assume the best solutions from the literature are near-optimal, we can conclude
that a large fraction of the optimality gap for the D-FSP is associated with its poor dual bound
(likely caused by constraints (39) and (40)).

When making the transition from the D-FSP to the H-FSP (which includes assignment decisions
for each job at each processing stage), the average optimality gap of the CP model unexpectedly
decreases from 48.91% to 3.5%. We initially observed expectedly that the CP performs well only on
problems with sequencing decisions and its performance gets deteriorated when it solves scheduling
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Figure 2: Average gap of the CP in the selected scheduling problems

problems requiring joint optimization of assignment and sequencing variables. We initially used
“Alternative” global constraints (similar to the ones used in F-JSPs) to optimize the assignment
part of the H-FSP along with “NoOverlap” global constraints to avoid overlapping of operations
within each stage of H-FSP. Such formulation yielded poor performance due to the high number
of assignment variables. To achieve better performance for the CP model for the H-FSP, we
exploited the special structure within the H-FSP to circumvent the complexity associated with the
optimization of assignment decisions and developed a model that is more computationally efficient
than some of the pure scheduling problems. We used the global constraint “Pulse” that is widely
used in cumulative scheduling problems (Laborie et al., 2018). The new CP formulation based on
“Pulse” limits the cardinality of simultaneous jobs being processed at any stage of H-FSP to the
number of identical machines in each stage. The use of global constraints “Pulse” are precluded
when machines at each stage are non-identical. For joint assignment+sequencing problems that
cannot be effectively reduced to a cumulative scheduling problem (e.g., D-FSP and F-JSP), we
use “Alternative” and “NoOverlap” to combine assignment and sequencing, which culminates in
weaker CP performance. The unexpected superior performance of this new CP model on H-FSP
using function “Pulse” inspires hope that resemblant superior performances might be attainable for
D-FSP and F-JSP that require joint optimization of assignment and sequencing.

F-JSP is another scheduling problem that combines assignment and sequencing decisions. The
difference, though, is that the processing route of jobs on the shop floor is non-linear, unlike D-FSP
and H-FSP, leading to more complex sequencing decisions. Our finding shows that there is not a
single benchmark in which the MIP model outperforms the CP model. The CP model with the
feasibility rate of 100% on all instances achieves much lower average optimality gaps and RPDs.
The most difficult instance of F-JSP for both CP and MIP models is the new benchmark of BV
Naderi and Roshanaei (2021) in which the average gap is 55.9% and 81% for the CP and MIP
models, respectively; however, the RPD of the CP for this problem instance is 3.2%, whereas that
of the MIP model is 759%. This finding shows the reliability of the CP model in finding feasible
solutions and the quality associated with these solutions. We can thus strongly conclude that the
CP model is the best off-the-shelf exact technique for solving the F-JSPs.19

So far we have discussed scheduling problems that are either pure sequencing or problems that

19The best global exact technique for solving F-JSP belongs to the CP-LBBDCP of Naderi and Roshanaei (2021)
that achieves an average optimality gap of 0.57% for the BV benchmark.
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jointly optimize assignment and sequencing variables. We now focus on the PMSP that is a pure
assignment problem. We can see that solving the PMSP represents a turning point for the CP
model (see Table 12). The PMSP is the only scheduling problem in which the MIP model is superior
to the CP model. While both models find feasible solutions for 100% of instances, the MIP and CP
models solve 63.4% and 4.6% of instances to optimality, respectively. In addition to solving more
instances to optimality, the MIP model has an average optimality gap of just 0.2%, which is much
lower than that of the CP with 12.5%. This indicates a clear superiority of the MIP over the CP
if we ignore their average RPDs. Comparing the average RPD of these two models demonstrates
that the performance of the CP is not as inferior as its average optimality gap insinuates. The
CP yields an average RPD of 2.3% and the MIP yields an average RPD of -0.11% (this negative
number indicates that the solution provided by the MIP model is lower (i.e., better) than most of
the best existing solutions from the literature—This turns the numerator of the RPD formula into a
negative number). This means that the CP model only generates poor lower bounds for the PMSP,
resulting in large gap values. However, when compared with the best-known upper bounds from the
literature, the average RPD is much lower. In any case, it has to be acknowledged that MIP models
are much better for solving the PMSP.

4.3.4. Impact of problem size on performance
Up to this point, we have shown average results across all benchmarks, without commenting on

the effect that instance size has on the performance of the CP and MIP models. Figure 3 shows
the effect of the number of jobs and machines on the tested models for the FSP. As illustrated in
Figure 3(a), the MIP model is very sensitive to an increase in the number of jobs, whereas the CP
model’s performance remains almost constant regardless of the number of jobs. MIP models fail to
find feasible solutions for problem instances exceeding 100 jobs, but the CP model can find integer
feasible solutions for all instances (up to 500 jobs). It is remarkable that the CP remains robust
concerning the increase in the number of jobs and achieves similar average optimality gaps for
significantly different job sizes. Unlike the increase in the number of jobs, the CP model’s average
optimality gap deteriorates as we increase the number of stages, whereas the average optimality
gap of the MIP model ameliorates (see Figure 3(b)). The number of stages creates more precedence
relations for the models and this result implies that the CP is influenced by the precedence relations,
more than by the number of jobs, which is commonly considered to be the problem size indicator of
importance in the scheduling literature. Despite the observable improvement pattern in the MIP’s
performance due to the increase in the number of stages, its performance is still vastly inferior to
that of the CP model for the problem instance sizes considered.

4.3.5. Bound analysis
Up to this point we have employed the RPD and the optimality gap as performance measures.

RPD measures the relative distance with respect to the best-known solutions from the literature
and the optimality gap measures the absolute distance between the objective function value of the
integer solution with that of the LP relaxation of each model on each instance. We analyze the
origin of the optimality gap for both models.20 There are origins for an optimality gap, relative
distance of upper/lower bounds from the optimal. The MIP model obtains the optimality gap

20Note that we are not concerned with how bounds are calculated within the CP Optimizer. For the black box
analysis of gaps in CP and MIP models, it suffices to know that there is a built-in mechanism within the CP Optimizer
that takes care of the bound calculation. See, for instance, the seminal work of Hooker and Yan (2002) on this matter
that calculates bounds via the relaxations of global constraints.
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Figure 3: Average Gap vs. problem size for the MIP and CP models in permutation flow shops (FSP).

for sizes of up to n = 100. Figure 4 shows the optimality gap, RPDs of both upper and lower
bounds. Clearly, the large optimality gap of the MIP models comes from its weak lower bound as
a consequence of disjunctive constraints of sequencing (i.e., big-M constraints). These disjunctive
constraints would lead to a poor linear relaxation and a weak lower bound.
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Figure 4: Permutation flow shop: MIP performance.

Remark. Although the major portion of the large optimality gap of the MIP model is because of
the weak dual bound (i.e., poor linear relaxation of disjunctive constraints), its primal solution (i.e.,
integer solution) is still inferior for sequencing problems and is highly impacted by the number of
jobs.

5. Conclusions and future research

It is a common practice in the scheduling literature to compare algorithms (and also other MIPs)
against one another. MIP models are often used as a baseline and their mostly poor solutions
are used as a justification for the introduction of metaheuristics. As a result, the literature on
metaheuristic techniques is incredibly rich in the shop scheduling area. Constraint Programming
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(CP) models have gained momentum over the past two decades. Originally, CP models were used for
Constraint Satisfaction Problems, mainly to determine whether a problem had a feasible solution or
not. Also, CP models were used for optimization problems in that they could verify the optimality
of their integer solutions but could not provide any bound for their feasible integer solutions. That
changed with the introduction of paradigm-altering versions of CP engines, and more specifically,
the CP Optimizer 12.8, which can provide optimality gaps for its integer feasible solutions. We took
advantage of these characteristics and conducted a comparative evaluation of the performance of
MIP and CP models for many different shop scheduling problems. The selected scheduling problems
have very active research communities and the results of this research will help these areas in the
design of more efficient algorithms. The tested scheduling problems comprise different settings
occurring in various service and manufacturing industries. These problems include permutation flow
shop scheduling (FSP), FSP with sequence-dependent setup times, non-permutation FSP, no-wait
FSP with Cmax minimization objective, FSP with total completion time and total tardiness objective
functions, distributed FSP, hybrid flow shop, flexible job shops, parallel machine scheduling, job
shop scheduling and open shop scheduling. These problems range diversely from pure sequencing to
joint sequencing-assignment, to pure assignment problems. Apart from the consideration of these
problems because of their practical applications, the selection is also motivated by the fact that these
problems have established and well-known benchmarks, for which high-quality solutions exist. The
third consideration when choosing these shop scheduling problems is that, due to their NP-hardness
and overall difficulty, the vast majority of the extant literature consists of either heuristics or
metaheuristics that provide no bounds or any optimality guarantee for the integer solutions found.
In the absence of strong exact and general techniques in the literature on these scheduling problems,
most researchers have chosen to compare their algorithms against (i) other sub-optimal algorithms
and/or (ii) with the bounds obtained from the mathematical or constraint programming models
developed for these problems. With that being said, it is of paramount importance to employ the
best exact models to have the best possible bounds and feasible solutions for comparison.

For each of the shop scheduling problems stated earlier, we have presented a MIP model and
a CP model. With them, we solved standard and well-known benchmarks and evaluated their
performance based on two measures: optimality gap and relative percentage deviation (RPD). It is
essential to use the best-known integer solution in the entire literature for each instance to be able
to calculate the RPD. We reviewed all the papers published in the past 20 years that used these
standard benchmarks to find the best-known integer solution for each instance in each benchmark.
The accompanying electronic excel file contains all these best integer solutions in the literature for
future reference. Having tested 19,869 (3*6,623) experiments, we obtained many improved integer
solutions against which researchers can compare the performance of their algorithms. We have also
provided insights on which scheduling problems, models yield large average optimality gaps but at
the same time low RPDs with respect to best-known integer solutions in the literature.

After conducting our computational campaign on around 6,623 problem instances gathered from
the extant literature, we have shown the following:

• CPLEX 20.1 is strongly superior to Gurobi 9.1.2 in terms of feasibility and optimality rates.
CPLEX 20.1 and Gurobi 9.1.2 obtained 72.83% and 16.50% and 59.91% and 16.21% feasibility
and optimality rates, respectively. In view of our analysis, we strongly recommend CPLEX,
as a superior mathematical programming solver, for solving our scheduling MIP problems if
researchers intend to use MIP technology as their modeling choice.

• CP Optimizer 20.1 is massively superior to the CPLEX 20.1 in terms of feasibility rate,
optimality rate, optimality gap, and RPD. In the grand scheme of the considered performance
measures, CP Optimizer 20.1 strongly outperforms both CPLEX 20.1 and Gurobi 9.1.2. We
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thus recommend CP Optimizer 20.1 as the best off-the-shelf exact technique for solving our
scheduling problems.

• The no-wait or sequence-dependent setup time variants significantly degrade the performance
of CP, while the impact on MIP is just the opposite. For example, the no-wait variant results
in marginal performance improvements for MIP models. Despite this change, CP is still a
better option.

• In the case of flow shop problems, CP models yield the lowest average optimality gaps for
makespan but the highest for total tardiness. For total completion time, the optimality gap of
the CP model is 4.5 times greater than that of the CP model with makespan. This suggests a
large variability in the expected results concerning the objective function to be optimized.

• CP models perform well in pure sequencing problems and are a superior alternative for solving
joint sequencing-assignment problems. MIP models are superior when the scheduling problems
only involve assignment decisions.

• The performance of MIP models is very sensitive to an increase in the number of jobs while
the performance of the CP models is robust with respect to the number of jobs, but it is
moderately influenced by the number of machines that each job must visit. The consideration
of a higher number of stages results in more precedence relations for models and this result
implies that CP models are influenced by the precedence relations, more than the number of
jobs, which is commonly considered as the problem size indicator in the scheduling literature.
This seems to hold only for MIP models.

• We compared the performance of MIP and CP models on disjunctive shop scheduling problems
using default settings of solvers. We specified earlier that we do not seek to compare nuances in
MIP and CP models. MIP solvers, however, are notorious for the multitude of settings one can
change to affect their behavior. Such settings can have a dramatic effect on their ability to zero
in on solutions and prove optimality. Usage of primal and dual heuristics, feasibility pumps,
cutting planes, primal/dual balance, branching strategies, integrality focus are just a handful
of the dozens of parameters that can dramatically affect the MIP engine. Comparing MIP
and CP performances with optimized hyperparameters is one interesting research direction.
To the best of our knowledge, we used the best MIP models for comparison purposes, but one
might argue that other existing CP models could be brought into computational comparisons.
We must acknowledge that we are satisfied with the quality of the CP models we presented
for our scheduling problems as they helped us spread the message regarding the efficacy
of newly offered capabilities of CP Optimizer 20.1 in scheduling problems—the possibility
of calculating bounds for found integer solutions. We however acknowledge the need for
conducting a computational comparison among different CP models solved via different CP
solvers, similar to the ones that we performed to ascertain which mathematical programming
solver is more efficient for solving our problems. For instance, a future study can include
detailed comparisons between existing JSP models and the one that we proposed in this
study or it can be general comparisons among all scheduling models. Another future study
can include comparative evaluations between CP and MIP models on cumulative scheduling
problems in that a machine can process more than one operation at a time. Last but not
least, many new decomposition methods can be proposed to solve our scheduling problems.
It would be interesting to compare the performance of these decompositions with our CP
models, similar to the one performed in Naderi and Roshanaei (2021) for the F-JSP. Recently,
it has been shown that effective decomposition approaches can be developed when CP and
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MIP models are hybridized (see Roshanaei et al., 2020; Booth et al., 2016; Naderi et al.,
2021). Future studies could include multiple factories, each of which includes the shop floor
scheduling problems that we studied. It would be an interesting avenue for future research
if one could solve these shop floor scheduling problems with a solver such as SCIP that can
hybridize the strength of both the CP and MIP models. We are currently planning to solve
some of these scheduling problems, including the hybrid flow shop and distributed flow shop
with logic-based Benders decomposition.

Acknowledgments

Rubén Ruiz is partially supported by the Spanish Ministry of Science, Innovation and Universities
under grant “OPTEP-Port Terminal Operations Optimization” (No. RTI2018-094940-B-I00) financed
with FEDER funds.

We offer our highest thankfulness to the review team for their in-depth comments and critical
views on various aspects of our select problems. In particular, we would like to express our deepest
gratitude to the first reviewer who provided us with efficient alternatives for PMSP and H-FSP CP
models.

38



Appendix A. Alternative CP models for H-FJSP

These are the alternative CP models for the H-FSP and PMSP.

Appendix A.1. Alternative CP models for H-FSP

minimize Cmax, (CPH-FSP)
subject to Constraints (14) and (18),

Task∗jik = IntervalVar
(
Pji,Optional

)
j ∈ J , i ∈ I, k ∈ Ki, (A.1)

Alternative
(
Taskji, Task

∗
jik : k ∈ Ki

)
∀j ∈ J , i ∈ I, (A.2)

NoOverlap
(
Task∗jik : j ∈ J

)
∀i ∈ I, k ∈ Ki. (A.3)

(A.1) defines an optional interval variable for each operation on each machine. Constraint (A.2)
selects one interval variable for each operation that determines the assignment.

Appendix A.2. Alternative CP models for PMSP

minimize Cmax, (CPPMSP)
subject to Task∗ji = IntervalVar

(
Pji,Optional

)
j ∈ J , i ∈M, (A.4)

Alternative
(
Taskj , Task

∗
ji : i ∈M

)
∀j ∈ J (A.5)

NoOverlap
(
Task∗ji : j ∈ J

)
∀i ∈M, (A.6)

Cmax = max
(j)

(
EndOf(Taskj)

)
. (A.7)

Constraint (A.4) defines an optional interval variable for each operation on each machine. Con-
straint (A.5) selects one interval variable for each job that determines the assignment.

References

Androutsopoulos, Konstantinos N., Eleftherios G. Manousakis, Michael A. Madas. 2020. Modeling
and solving a bi-objective airport slot scheduling problem. European Journal of Operational
Research 284(1) 135 – 151.

Applegate, David, William Cook. 1991. A computational study of the job-shop scheduling problem.
ORSA Journal on Computing 3(2) 149–156.

Booth, Kyle E. C., Tony T. Tran, J. Christopher Beck. 2016. Logic-based decomposition methods for
the travelling purchaser problem. Claude-Guy Quimper, ed., Integration of AI and OR Techniques
in Constraint Programming. International Conference on AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems (CPAIOR 2016). Springer, 55–64.

Bowman, E.H. 1959. Schedule-sequencing problem. Operations Research 7(5) 612–614.

Brandimarte, P. 1993. Routing and scheduling in a flexible job shop by tabu search. Annals of
Operations research 41(3) 157–183.

Brucker, Peter, Johann Hurink, Bernd Jurisch, Birgit Wöstmann. 1997. A branch & bound algorithm
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