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Abstract

This article proposes a disaster-type model in which investors learn about disaster

probabilities as well as subsequent economic recoveries. Investors not only learn from

news, but also from the absence of news. No news during good economic times is

perceived as good news, while no news during bad economic times is perceived as bad

news. Investors�rational reactions toward disasters and recoveries help reconcile var-

ious asset pricing puzzles. Our model is solely based on US consumption experience,

does not require jumps in consumption levels, and is consistent with empirically low

consumption autocorrelation. It generates time-varying disaster and recovery inten-

sities helpful to explain equity volatility. Lastly, it di¤erentiates jump from di¤usive

risk premiums which are instrumental in explaining option market regularities.
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I Introduction

Disaster research within the paradigm of Rietz-Barro hypothesis has signi�cantly improved

our understanding of asset pricing puzzles.1 A common feature of most of this literature

is that investors do not learn through time about disaster probabilities. In this study, we

investigate the implications of learning about the probability of economic disasters on the

risk premium embedded in bonds, stocks, and options markets. We show that allowing

for learning about disasters reconciles various asset pricing regularities in a model that

does not require jumps in consumption level and that is solely based on US consumption

experience.2

We propose a model that builds upon the Rietz-Barro framework while not being sub-

ject to the common criticism of traditional disaster models (TDMs) (See, for instance,

Constantinides (2008); Mehra and Donaldson (2008)). Consumption in our model is con-

tinuous and disasters are treated as structural changes. This modeling choice has many

advantages. First, TDMs do not allow for a recovery period which takes the form of a

switch from the disaster phase to the normal phase in our model.3 Second, TDMs assume

that the entire drop in consumption upon disaster occurs over a single time period. By

modeling a disaster as a separate economic phase, consumption declines are unfolded over

several years. Third, in TDMs, stock market crashes are associated with large jumps in

the consumption level. In contrast, consumptions are smooth in the data. Our model al-

lows for stock market crashes to occur occasionally while consumption follows a continuous

path.

Our study starts with the observation that economic disasters are infrequent by their

nature and it is natural that investors forget about them after an extended period of normal

1See Barro (2006, 2009) and Nakamura, Steinsson, Barro, and Ursua (2011) for implication of disasters
on the risk free rate and equity premium. In subsequent studies, Wachter (2011) focuses on excess volatility
for the aggregate stock; Gabaix (2011) tackles ten puzzles in �nancial economics; Gourio (2011) develops
a model able to explain stylized facts in the credit market; Du and Elkamhi (2011) presents a systematic
study on the pricing of options and defaultable bonds.

2Longsta¤ and Piazzesi (2004) illustrate that disasters based solely on the US experience can explain
around a third (2.6%) of the documented equity premium. Consequently, the more recent traditional
disaster literature relies extensively on the international drops in consumption assembled in Barro and
Ursua (2008) to motivate the choice of large magnitude in consumption drops (a mean around 30%,
almost three times the drop in US consumption during the Great Depression in the US).

3Nakamura, Steinsson, Barro, and Ursua (2011) provide an empirical study of recoveries from disasters
and conclude a mean net disaster magnitude of 15% based on international evidence. Using a theoretical
framework, Gourio (2008) shows that recoveries reduce the implied equity premium when the intertemporal
elasticity of substitution is close to that used in the long-run risk literature (e.g., Bansal and Yaron (2004)).
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times. But when disasters strike, investors react by showing excessive concern about the

possibility of future disasters. In an extended version of the model, we also allow for

learning about the intensity of economic recovery. Upon recovery, investors become more

optimistic and update their assessment of the posterior intensity of economic recovery

upward.

During each economic phase, our model maintains comparable asymmetric investors�

reactions as in Veronesi (1999). In addition, the present study introduces a novel learning

mechanism. Investors not only interpret the arrival of news but also interpret the absence

of news in an asymmetric way. More explicitly, the model captures the idea that during

the normal phase, no news is perceived as good news. In other words, in the absence of

disasters, investors update their posterior assessment of disaster probabilities downward.

Further, the longer investors experience normal economic conditions, the larger the in-

crease in asset prices. However, when a disaster strikes, two compounding e¤ects take

place. First, investors become paranoid about future disasters�likelihood and dramatically

increase their posterior belief about the disaster intensity. Second, in the extended model,

no news is perceived as bad news during the disaster phase. The longer the disaster period

persists, the more pessimistic investors become concerning the potential economic recovery.

Consequently, they continuously and negatively update their posterior assessment of the

recovery rate, resulting in a large and persistent drop in asset prices.4

Under recursive utility considered in this article, investors�learning as described above

adds to the price of disaster risk and leads to more dramatic stock market crashes. First,

preference for earlier resolution of intertemporal risks implies that bad news about con-

sumption growth raises the agent�s marginal utility. Learning strengthens this e¤ect since

the agent becomes more concerned about disasters in the future after a recent strike. Sec-

ond, pessimism about the future leads to further depression of the aggregate equity prices

beyond that implied by the worsening economic condition. The �rst e¤ect creates the

strong precautionary saving motive which helps resolve the risk-free rate puzzle (e.g., Weil,

1989). By combining the two e¤ects, our model generates the extra learning-induced pre-

4With few exceptions (e.g., Collin-Dufresne, Goldstein, and Helwege (2008, CDGH); Benzoni, Collin-
Dufresne, and Goldstein (2011, BCDG)) in which the agent�s belief about future jumps is updated after
the arrival of a Poisson process, the learning literature focuses largely on learning about drifts. Examples
include David (1997), Veronesi (1999), and Veronesi (2000), and later extensions by David and Veronesi
(2002), Pastor and Veronesi (2006), David (2008) and Ai (2011). All these models feature the continuous
arrival of news and continuous belief updates. In our framework, news arrives in a discrete manner but
investors also continously update their beliefs in the absence of news.
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mium that helps to resolve the equity premium puzzle (e.g., Mehra and Prescott, 1985)5.

As an important advantage, learning about disaster intensity endogenously generates

time-varying disaster rates under the �ltered measure. This is a desirable property in

matching the second moment of assets returns (e.g., Wachter (2011); Gabaix (2011)).6 We

show that our model can deliver a reasonable match of empirically observed volatility of

asset returns. The model-implied equity return volatility is monotonically decreasing in the

posterior probability of the high disaster-intensity state (denoted by �). This e¤ect, taken

together with the model implied increasing and convex asset prices function, provides a

rationalization of the "leverage" e¤ect observed in the data.

The performance of the model for both bond and equity markets sheds light on an

interesting �nding concerning the long-run risk literature. Recursive utility when combined

with learning can explain asset prices without large persistent variation in consumption

moments. Aggregate consumption follows a random walk in our setup, and the model-

implied �rst-order autocorrelation is around 0.28. This magnitude is far less than 0.5

considered in the long-run risk literature, and it is consistent with the recent evidence by

Beeler and Campbell (2009, around 0.2). This level is also close to the 0.25 autocorrelation

obtained by time-averaging a continuous-time random walk in Working (1960). Beeler and

Campbell (2009) also report that higher-order consumption autocorrelations, particularly

the third and fourth lags, are strikingly low relative to the predictions of the traditional

long-run risk models. In our setup, higher order autocorrelations are all close to zero.

We argue that, given the lack of strong evidence in support of persistent �uctuations in

consumption growth and its higher moments, the learning mechanism emphasized in this

paper contributes to the resolution of asset pricing puzzles while maintaining close ties

with the observed consumption dynamics.

We next turn our attention to the model�s implications on equity index options. The

learning-induced compensation drives up the jump-risk premium as a fraction of the total

premium, hence the potentiality to e¤ectively address premiums implicit in option data. To

put it di¤erently, Liu, Pan, and Wang (2005, LPW) argue that for an equilibrium model

5Ai (2010) also uses recursive utility combined with learning. Unlike our paper, he adopts the learning
channel as in Veronesi (1999, 2000). In his model, learning creates a positive covariance between the
realized return and the expected return on the production technology which induces a higher di¤usive
risk premium. In this paper, learning creates a positive covariance between the expected arrivals of future
events and their actual realizations, which induces higher compensations for jump risks. In addition to
introducing a new learning channel, our model-implied jump premium helps jointly explain aggregate
equity and its derivatives, the latter of which is not addressed in Ai (2010).

6Unlike the present setup, these models impose the time varying disaster intensity in an exogenous way.

4

Redouane.Elkamhi
Highlight



to explain option premiums, it is important that the model di¤erentiates the pricing of

jump risks from that of di¤usive risks. In our model, learning about economic disasters

provides an additional channel that controls the pricing of disasters separately from that

of di¤usive shocks. Quantitively, our model generates implications of the average ATM

premium (de�ned as the di¤erence between ATM), the average return volatility, the average

smirk premium (de�ned as the di¤erence between 10% OTM and ATM volatility), as well

as the average 10% OTM volatility that are all consistent with their empirical levels.

In a related research, Benzoni, Collin-Dufresne, and Goldstein (2011, BCDG)) also

studies the impact of learning on option pricing. Their paper is the �rst that successfully

explains the shift in the shape of the implied volatility smirk before and after the 1987

crash. Similar results can be generated by our setup if we treat 1987 event as a trigger

of change in economic states. Relative to BCDG, our article distinguishes itself along two

key dimensions. First, in contrast to the permanent jump assumed in BCDG, we allow for

economic recovery which enriches our model dynamics supported by empirical evidences.

Second, in our extended model, investors learn also about the intensity of economic recovery

which generate novel asymmetric learning mechanism as discussed above.

In summary, accounting for investors learning about economic disasters provides an ex-

tension to disaster based research. The simple model we propose is able to simultaneously

explain various regularities in di¤erent markets. The pricing performance of our model

comes along with four realistic improvements. First, our model is not subject to some of

the aforementioned criticism of the TDM. Second it is solely based on the US consump-

tion experience and more importantly consistent with empirically observed consumption

dynamics. Third, it endogenously generates time varying disaster and recovery intensities.

Fourth, the model di¤erentiates the pricing of jump risks from that of di¤usive risks which

is desirable for derivative pricing.

For completeness, we also provide an extension of the model in which investors update

their beliefs about the intensity of economic recovery. Following the switch from the

disaster phase to the normal phase, the aggregate stock market experiences an upward

jump. In this setup, investors�reactions to the arrival of disaster is further strenghtened

by their reactions to a period of no news during the disaster phase. More explicitly, getting

paranoid upon the strike of disaster and growing more pessimistic waiting for economic

recovery, when combined, create a strong positive covariance between assets� expected

returns and their actual realizations. As a result, the general model better explains all the

three markets through introducing novel and more realistic investors�reactions during the
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bad economic conditions.

In an in�uencial paper, Weitzman (2007) argues convincingly for the importance of

learning about parameter uncertainty in explaining asset pricing puzzles. Without con-

sidering disasters, he shows that Bayesian updating of unknown structural parameters

inevitably adds a permanent tail-thickening e¤ect to posterior expectations. In this arti-

cle, we emphasize learning about unknown parameters related to disasters, which we show

not only provides an expected-utility solution for asset pricing puzzles but also uncovers

novel investors�reactions to news as well as to the absence of news.

The rest of the paper is organized as follows. Section II and III present the setup

of the base model and derive the model-implied pricing. Section IV describes the model

mechanism. In Section V, we provide the calibration and discuss the quantitative results.

Section VI extends the base model to the more general case where the agent also learns

about the recovery rate. Section VII concludes. All technical details are in the Appendices.

II The setup

A. Preference and consumption process

Assume the existence of a representative agent whose preference is described by the sto-

chastic di¤erential utility (SDU) developed in Du¢ e and Epstein (1992), which is the

continuous-time version of the recursive utility considered in Kreps and Porteus (1978)

and Epstein and Zin (1989). Given the consumption process fCu : u � 0g, the period-t
utility of the agent, denoted by Jt; is de�ned recursively as

Jt = Et

�Z 1

t

f (Cu; Ju) du

�
: (2.1)

In the above equation, f (:) denotes the normalized aggregator de�ned as

f (Ct; Jt) =
�

1� 1= 
C
1�1= 
t � [(1� 
) Jt]

1�1= 
1�


[(1� 
) Jt]
1�1= 
1�
 �1

; (2.2)

6



where �, 
 (6= 1) ; and  (6= 1) denote respectively, the subjective discount rate, the risk
aversion, and the elasticity of intertemporal substitution.7

In the TDMs (e.g., Rietz (1988); Barro (2006)), economic disasters are treated as jumps

in consumption levels. In this paper, we model disasters as an alternative economic phase.

A disaster strikes when a switch from the normal phase (n) to the disaster phase (d) occurs.

Conditional on a given phase st 2 fn; d; rg at period t; the aggregate consumption evolves
according to

dCt
Ct

= � (st) dt+ � (st) dBt; (2.3)

where dBt is a standard Brownian common to both phases. Upon the strike of a disaster,

consumption level does not jump but its process experiences a structural change. We set

� (d) < 0 < � (n) and � (d) > � (n) implying that relative to the normal phase with positive

growth rates, consumption shrinks on average with higher volatilities during the disaster

phase. As described in the Introduction, treating a rare economic disaster as a structural

change rather than an instantaneous permanent jump is more realistic. Further, it is

arguable that investors can easily distinguish a rare economic disaster phase from normal

economic conditions, much more than they can distinguish recessions from expansions.

Finally, we model another phase, referred to as the recovery phase under which � (r) >

� (n) : This speci�cation is consistent with empirical evidences (e.g., Nakamura, Steinsson,

Barro, and Ursua (2011)) that a more rapid growth usually follows at the end of the disaster

period. For simplicity, we assume � (r) = � (n) :

Denote by �, �; and �; respectively, the switching intensity from the normal phase to

the disaster phase, i.e., disaster probability, the switching intensity from the disaster phase

to the recovery phase, i.e., the recovery probability, and the switching intensity from the

recovery phase to the normal phase. Variations in the �rst two moments of consumption

growth introduce the intertemporal macroeconomic risk. By adopting the recursive utility,

7A recent paper by Chen, Joslin and Tran (2012) studies heterogeneity of investors on their assessment
of the disaster risk. While their model generates interesting implications that even a small fraction of
optimistic investors can generate high risk-sharing capacity which attenuates the magnitude of disaster risk,
we choose the representative agent framework at the presence of learning for three reasons. First, beliefs of
both optimistic and pessimistic investors converge following the strike of disaster. This is consistent with
observations that sentiment becomes highly contagious during bad times. Second, due to the mechanism
of "learning from no news", belief convergence also occurs during normal times. Speci�cally, after an
extended period of time without disasters, pessimistic investors, who feel they might be wrong, would
revise downward their assessment of disaster likelihood more than their optimistic counterparts. Third,
our choice enables us to provide a study on the impact of learning about disaster risks on asset prices and
uncover novel learning mechanism.
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the representative agent is concerned about how quickly intertemporal risks are resolved,

which is determined by the speed at which news about future consumption growth arrives.

The rate of news arrival is governed by the rate at which the distribution of economic

phases converges to their steady state, where the convergence rate is given by �+ � + �:

B. Learning about the disaster rate

Since disasters are rare events and their occurrences are infrequent by nature, it seems

plausible to treat their arrival intensity � as inaccurately observed. Speci�cally, assume

that the agent knows � only takes two possible values, �G and �B; but she does not observe

which one is realized. Setting �G < �B; we interpret the two values as the good and the

bad ��regime. We use the word regime to di¤erentiate from phase which denotes the

economic condition. The intensity � switches from one value to another according to the

following Markov chain:

Pr
�
�t+dt = �Bj�t = �G

�
= �Gdt; (2.4)

Pr
�
�t+dt = �Gj�t = �B

�
= �Bdt; (2.5)

where (�G; �B) are known parameters. The implied long-run disaster rate is thus

�� =
�B

�G + �B
�G +

�G
�G + �B

�B: (2.6)

In the base model, we assume that the recovery rate � is accurately observed. The more

general case where the agent also learns about � is discussed in Section VI.

Since the agent does not know the actual ��regime, she forms a posterior estimation of
the disaster rate based on her observations during normal times. Denote by �t the agent�s

posterior assessment that � is in the good regime at period t, i.e. �t � Pr
�
�t = �GjFt

�
:

Conditional on the normal phase and by Theorem 19.6 of Lipster and Shiryaev (2001), we

obtain the following dynamics for �t:

d�t = ��dt+ �t
�G � �pt
�pt

dM̂t (n; d) ; (2.7)

where

�� � �t
�
�pt � �G

�
+ (1� �t)�B � �t�G; (2.8)

dM̂t (n; d) is the Poisson process governing the strike of a disaster under the �ltered measure
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with intensity �pt;

�pt = �t�
G + (1� �t)�

B = �G + (1� �t)
�
�B � �G

�
(2.9)

which denotes the posterior estimation of �. �pt > �G since �B > �G: In particular, �pt = ��

when �t is at its long-run average of

�� � �B
�G + �B

: (2.10)

To understand the agent�s learning behavior about the arrival of disasters, let�s start

from �t = �� under which �� reduces to �
�
�p � �G

�
> 0: If no disaster occurs within

[t; t+ dt] ; i.e., dM̂t (n; d) = 0, the agent revises upward the likelihood of the good ��regime
with a low disaster rate such that �t drifts upward by ��dt: As a result, the posterior

estimation of the disaster rate, �pt; drifts downward. Intuitively, when nothing happens

over the next instant of time, the agent becomes less aware of the potential disaster by

assigning a lower probability to its occurrence in the future. In other words, investors

during the normal phase interpret the absence of news as good news.8

By contrast, if a disaster strikes within [t; t+ dt] ; the agent substantially revises down-

ward the good ��regime probability by

�+t � �t = �t
�G � �pt
�pt

=

�
�G � �B

�
�pt

�t (1� �t) < 0; (2.11)

where we�ve used (2.9) for the second equality. Consequently, �p jumps upward by: �
+
pt �

�pt =
�
�+t � �t

� �
�G � �B

�
> 0: For the ease of notation, in the following we drop the time

subscript for the states when there is no necessity to emphasize their time dependences.

Intuitively, upon an actual strike of disaster, the agent becomes more concerned about

intertemporal consumption risks by upgrading her assessment about the arrival of future

disasters. For any given �, the agent updates �p by a larger amount when the di¤erence

8In an unreported exercise, we also consider an extreme case that �G >> �B and an intial �t (condi-
tional on the normal phase) very close to 1. With �t serving as the only state varable in the base model,
this scenario represents an agent who is currently in a very good state of the economy. However, she be-
lieves that the transition probability from the good ��regime to the bad �� regime is extremely plausible.
While it seems di¢ cult to make the case that this "contrarian investor" is the representative agent of the
economy, it turns out that the drift in equation (2.8) becomes negative in this case. Intuitively, as time
goes on without any disaster this "contrarian" investor becomes more worried about the disaster that is
strongly expected. As a result, she updates upward her assessment of the disaster likelihood.
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between the two ��regimes,
���G � �B

�� ; is larger: Since disaster rates have direct impacts
on risk compensations, the above learning behavior eventually �nds its way into asset prices

in the form of learning-induced premiums.

III Asset pricing implications

A. Pricing kernel

At the presence of learning, �t or equivalently �pt serves as the state for pricing. By

homogeneity, the agent�s utility must be separable in consumption and the state, hence,

Jt =
C1�
t

1� 

[�I (�t; st)]

� ; (3.1)

where st 2 fn; d; rg denotes the economic phase;

� � 1� 


1� 1= : (3.2)

It can be shown that I (�t; st) in (3.1) captures the wealth-consumption ratio in the econ-

omy at period t.9

Following Du¢ e and Epstein (1992), we show that the pricing kernel is given by

�t = exp

�
�
Z t

0

�
�� +

1� �

I (�u; su)

�
du

�
C�
t I (�t; st)

��1 ; (3.3)

which loads on both the aggregate consumption and the wealth-consumption ratio I (:). By

Ito�s lemma for regime switching models (e.g., Mao and Yuan (2006)), the pricing kernel

conditional on the normal phase and the disaster phase follow respectively:

d�t
�t

= �r (�t; n) dt� 
� (n) dBt +

24 I ��+t ; d�
I (�t; n)

!��1

� 1

35hdM̂t (n; d)� �pdt
i

(3.4)

d�t
�t

= �r (�t; d) dt� 
� (d) dBt +

"�
I (�t; r)

I (�t; d)

���1
� 1
#
[dM (d; r)� �dt] (3.5)

9Proof is available upon request.
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d�t
�t

= �r (�t; r) dt� 
� (r) dBt +

"�
I (�t; n)

I (�t; r)

���1
� 1
#
[dM (r; n)� �dt] (3.6)

where dM̂t (n; d), dM (d; n) ; and dM (r; n) are the Poisson processes modeling the disaster,

the recovery, and the switching from the recovery phase to the normal phase respectively;

r (�t; :) denotes the short term interest rate.10

There are two di¤erences between (3.4) and (3.5). First, while the disaster rate � is

not observable and needs to be "�ltered" by its posterior estimation �pt; the recovery rate

v is accurately observed in the base model. Second, whereas � jumps downward upon the

strike of a disaster, it experiences no change following the economic recovery. In fact, the

agent stops updating �t conditional on st = d since the disaster phase has already been

realized. Similar observations applies to the comparison between (3.4) and (3.6). Section

VI provides discussions on the agent�s learning during the disaster time in a more general

setup.

In Appendix A.1, we derive the model-implied restrictions for the wealth-consumption

ratios (W/C) denoted by I (�; n), I (�; d) ; and I (�; r) conditional on the normal, the

disaster phase, and the recovery phase respectively. We then provide in Appendix B.1 the

numerical procedure that simultaneously solves them using the collocation method (e.g.,

Miranda and Fackler, 2002). Under the calibration that  is greater than one, I (:) reacts

positively to �. Across the three phases, I (:; r) > I (:; n) > I (:; d) for any given degree

of uncertainty. Intuitively, aggregate wealth depresses relative to its claim during disaster

times when consumption grows at the lowest speed and it rises relative to its claim during

recovery times when consumption grows at the highest speed. Substituting for W/C ratio,

we derive in Appendix A.1 the expressions of the short rates under both the disaster and

normal phases, and they are reported in (A.13)�(A.15).

B. Aggregate stock

Following Abel (1990) we model the aggregate dividend as the levered consumption, i.e.,

D = C�; where � > 1 denotes the leverage. By Ito�s lemma, the implied dividend process

conditional on st 2 fn; dg follows:

dDt

Dt

= �D (st) dt+ �D (st) dBt; (3.7)

10To show that pricing kernel implied from our setup has regular properties, we apply simulation studies
and �nd that the �rst up to the fourth (non-central) moments of the implied pricing kernel are all �nite.
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where

�D (st) = �� (st) +
1

2
� (� � 1)� (st)2 , (3.8)

�D (st) = �� (st) : (3.9)

De�ne IS (�t; st) = Pt
Dt
; where Pt is the price of the aggregate stock. By Ito�s lemma with

jumps, the stock returns conditional on the normal phase and the disaster phase follow

dPt
Pt

=

�
�D (n) +

1

IS (�t; n)

dIS (�t; n)

d�
��

�
dt+ �D (n) dBt +

 
IS
�
�+t ; d

�
IS (�t; n)

� 1
!
dM̂ (n; d) ;

(3.10)
dPt
Pt

= �D (d) dt+ �D (d) dBt +

�
IS (�; n)

IS (�; d)
� 1
�
dM (d; n) ; (3.11)

respectively, where for (3.11) we�ve used the assumption that there is no learning during the

disaster phase in our base model. Similar to (I (�t; n) ; I (�; d)), we derive the restrictions

for
�
IS (�t; n) ; I

S (�; d)
�
in Appendix A.2 and provide in Appendix B.1 the numerical

procedure for solving them.

From (3.10)�(3.11), the aggregate stock returns volatility conditional on the normal

phase and the disaster phase follow:

volR (�; n) =

vuut�D (n)
2 + �p

 
IS
�
�+t ; d

�
IS (�t; n)

� 1
!2
: (3.12)

volR (�; d) =

s
�D (d)

2 + v

�
IS (�; n)

IS (�; d)
� 1
�2
: (3.13)

respectively. Combining (3.10)�(3.11) with the pricing kernel processes (3.4)�(3.4), we

obtain the following instantaneous expected premiums for holding the aggregate equity:

EP (�; n) = 
� (n)�D (n)� �p

0@ I ��+t ; d�
I (�; n)

!��1

� 1

1A IS ��+t ; d�
IS (�t; n)

� 1
!
; (3.14)

EP (�; d) = 
� (d)�D (d)� v

 �
I (�; n)

I (�; d)

���1
� 1
!�

IS (�; n)

IS (�; d)
� 1
�
: (3.15)
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C. Equity index options

At period t; the equilibrium price of a put option written on the aggregate stock is by

de�nition:

Et

�
�t+�
�t

max(K � Pt+� ; 0)

�
;

where K denotes the the strike price; � denotes the time to maturity. Starting from

(�t; st), we simulate a large number of realizations of terminal option payo¤s and use their

average as the model-implied option price conditional on (�t; st) : More details are given

in Appendix B.3 where we also describe the computation of unconditional option prices.

Denote by Ot either the conditional (at the given economic phase) or the unconditional

price of a put option contract at period t which is characterized by (K; �) : The implied

Black-Scholes volatility (B/S-vol) is computed as

B/S-volt = BSC�1(� ;K;Ot; rt;t+� ; dpt;t+� );

where BSC�1 is the inverse of the Black-Scholes formula for the put option, inverted over

the argument �; rt;t+� and dpt;t+� are the interest rate and the dividend-price ratio over

the period of [t; t+ � ] :

IV Model mechanism

Our base model features two components: intertemporal consumption risks due to the

alternations of disaster and normal economic phases, and the agent�s learning about the

disaster intensity. In this section, we describe the mechanism in our base case setup.

A. Impacts of disaster modeled as structural changes

To facilitate the exposition of the model mechanism, we focus on moments conditional on

the normal phase. We switch o¤ the learning channel and study the impact of structural

changes in consumption. When the disaster rate � is accurately observed and conditional

on st = n; the short-term rate r and the equity premium EP are given by

rno (n) = �+�� (n)� 1
2

 (1 + �)� (n)2��1

�

"�
I (d)

I (n)

��
� 1
#
��

�
I (d)

I (n)

���1 �
1� I (d)

I (n)

�
;

(4.1)
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EP no (n) = 
� (n)�D (n)� �

 �
I (d)

I (n)

���1
� 1
!�

IS (d)

IS (n)
� 1
�
; (4.2)

respectively, where � = 1= . Di¤erent from the TDMs which feature jumps in consump-

tion level, an economic disaster manifests itself in (4.1)�(4.2) through jumps in the W/C

ratio I(d)
I(n)

: Due to structural changes in the consumption process, W/C ratio jumps while

consumption exhibits a continuous path.

When risk aversion and EIS parameters are both greater than one, I (:) responds pos-

itively to expected consumption growth but negatively to consumption volatility, hence
I(d)
I(n)

< 1. This result, combined with the implied negative � de�ned in (3.2), suggests that�
I(d)
I(n)

��
and

�
I(d)
I(n)

���1
are both greater than one. As a result, the last two terms in (4.1)

are both negatives and capture the precautionary saving motives against intertemporal

consumption risks.

Turning to (4.2), the �rst and second terms denote the usual compensation for di¤usive

and jump risks. In the second term,
�
I(d)
I(n)

���1
� 1 denotes the jump size of the pricing

kernel (see Eq. (3.4)), which is positive from the above discussion. Like consumption,

aggregate dividend also follows a continuous path, and stock valuation declines sharply

against dividend when a disaster strikes, which is captured by the negative IS(d)
IS(n)

� 1:
Taken together, the agent�s marginal utility jumps upward exactly when the stock market

crashes, hence the extra compensation in the form of jump-risk premium for holding the

aggregate equity.11

In sum, modeling disaster as a structural change when combined with recursive utility

provides a channel under which the change of economic phase is priced. The model also

enables the separation of di¤usive from jump risk premium, which is a desirable property

for option pricing. However, the extra jump risk premium induced by disaster in this

degenerated setup is of much lower magnitude to explain asset prices. In addition, the

disaster intensity in this setup is constant and as a consequence contributes negligibly to

the explanation of assets volatilities.

11It is straightforward to show that the pricing of disasters modeled as structural changes in consumption
depends crucially on the choice of recursive utility. Setting 
 = 1

 , (2.1)�(2.2) degenerate to the usual
power utility and � degenerates to one. Consequently, expressions for r and EP conditional on st = n
degenerate to rno;powert (n) = � + 
� (n) � 1

2
 (1 + 
)� (n)
2 and EPno;powert (n) = 
� (n)�D (n) ; which

are both independent of jumps.
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B. Impacts of learning about economic disasters

In this section we aim to decompose the equity premium and provide intuition on the

importance of allowing for learning about rare disasters in explaining asset pricing regu-

larities. We �rst rewrite rt (n) and EPt (n) in the base model with learning about disaster

as follows:

r (�; n) = �+�� (n)�1
2

 (1 + �)� (n)2��p

1

�

"�
I (�+; d)

I (�; n)

��
� 1
#
��p

�
I (�+; d)

I (�t; n)

���1 �
1� I (�+; d)

I (�t; n)

�
;

(4.3)

EP (�; n) = 
� (n)�D (n)� �p

0@ I ��+t ; d�
I (�t; n)

!��1

� 1

1A IS ��+t ; d�
IS (�t; n)

� 1
!
: (4.4)

For a given �; we decompose jumps of the wealth-consumption ratio into two terms:

I (�+; d)

I (�t; n)
=
I (�; d)

I (�; n)

I (�+; d)

I (�; d)
; (4.5)

On the right hand side of (4.5), the �rst term I(�;d)
I(�;n)

is the counterpart of I(d)
I(n)

in the no-

learning case, and the second term
I(�+;d)
I(�;d)

is due to learning, where �+ = � �
G

�p
< �: Since

I (:; d) is increasing in its �rst argument, as plotted in Figure 1, the second term is also

less than one which adds to the downward jump of W/C ratio. By combining (4.5) with

(4.3), learning about disasters strengthens the precautionary saving which works towards

the resolution of the risk-free rate puzzle.

Using similar decompositions for the jump size of IS (:) ; we show that learning implies

stock market crashes following the arrival of the disaster phase. On one hand, the agent

who cares about intertemporal risks, further trades down aggregate equity relative to that

suggested by the worsening economic condition because of her paranoia about future dis-

asters. On the other hand, the extra downward jump in the W/C ratio translates into the

extra upward jump in the pricing kernel as captured by 
I
�
�+t ; d

�
I (�t; n)

!��1

� 1 =
�
I (�; d)

I (�; n)

I (�+; d)

I (�; d)

���1
� 1;

which delivers higher compensation for disaster risk. The two e¤ects, which are both

attributed to learning about disaster likelihood, work together toward the increase of the

15



jump risk premium component, and thus toward the direction of the resolution of the

equity premium puzzle.

In what follows we illustrate the extra jump risk premium due to learning. By rewriting

(4.4) as

EP (�; n) = 
� (n)�D (n)��p

 �
I (�; d)

I (�; n)

���1
� 1
!�

IS (�; d)

IS (�; n)
� 1
�
+EPL (�; n) ; (4.6)

where the second term is the corresponding counterpart from (4.2); the last term EPL
t is

referred to as the learning-induced premium, which is given by

EPL (�; n) = �p

24 � I (�; d)
I (�; n)

���1
� 1
!�

IS (�; d)

IS (�; n)
� 1
�
�

0@ I ��+t ; d�
I (�t; n)

!��1

� 1

1A IS ��+t ; d�
IS (�t; n)

� 1
!35 :

(4.7)

First, learning about disaster risk leads to more dramatic jumps in the stock market, as

evidenced by
IS
�
�+t ; d

�
IS (�t; n)

� 1 < IS (�; d)

IS (�; n)
� 1 < 0:

Second, stock market crashes are viewed as riskier at the presence of learning. This e¤ect

is captured by  
I
�
�+t ; d

�
I (�t; n)

!��1

� 1 >
�
I (�; d)

I (�; n)

���1
� 1 > 0:

As a result, EPL
t (n) > 0, hence the extra positive portion of equity premium associated

with jumps.

As suggested by Liu, Pan, and Wang (2005; LPW), this latter component has a large

impact on the explanation of premiums and smirk in the option market relative to the

TDMs. LPW add an additional layer of uncertainty aversion towards jumps, along the

lines of robust control as in Anderson, Hansen, and Sargent (2000), and document that

the implied rare-event premium due to this additional layer of uncertainty is essential to

producing a large smirk premium. By resorting to imprecise knowledge about the arrival

of disasters, the present paper provides an alternative mechanism that prices rare events

separately from di¤usions, hence its relevance to option pricing.
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V Quantitative results

A. Calibration

Following numerous previous studies, we set �(n) = �(n) = 2%.12 Since the Great Depres-

sion represents the prototype of economic disasters in the US, we calibrate �(d) and �(d)

to annual consumption data from 1929 to 1933 downloaded from Robert Shiller�s website.

The consumption process is di¤erent during the disaster phase in that the consumption

growth rate shrinks on average with higher volatility. In particular, we �nd �(d) = �3:6%
and �(d) = 5%:

In contrast to the TDMs, we rely on US experience to calibrate the parameters related

to disasters. Disaster arrival rate in our model is inaccurately observed, and we set its long-

run average �� at 1.7%. This level is much lower than the 3.6% used in recent TDMs and

based on international evidences (e.g., Barro and Ursua (2008)). We next choose � = 1=3

implying that the disaster phase lasts on average for three years, which is consistent with

the duration of disaster phase during the Great Depression. The switching intensities

between the two ��regimes are set at �G = 0:0025 and �B = 0:025 which is consistent

with BCDG. With these values, the disaster rate in its stationary region points to the

"good" regime with probability �B=
�
�G + �B

�
= 0:91: For the base case calibration, we

impose

�G =
��

2

�G + �B

�B
; �B =

��

2

�G + �B

�G
; (5.1)

so that the long-run intensity given by (2.6) is indeed ��. Under (5.1) and our choices of�
�G; �B

�
; �G and �B are 0.00935 and 0.0935, respectively.13

We set the subjective time discount rate, �; to 2% which is equivalent to an annual

discount factor of 0.98 in discrete time models. We choose the risk aversion parameter


 = 5; which falls within the range of 1 to 10 deemed reasonable by Mehra and Prescott

(1985). For comparison, Barro (2006) considers 
 = 3 and 4; Bansal and Yaron (2004)

12Since disasters are rare by nature, the average moment values are close to those during normal times.
While the expected consumption growth rate is usually calibrated at around 2%, reports about consump-
tion volatility are more diverse. For example, using quarterly data from 1947�2001, Menzly, Santos, and
Veronesi (2005) report a volatility of 1%. Using older data, Campbell (1999) reports a volatility of 3.26%.
13We conduct an extensive comparative analysis with respect to the four parameters related to learning:

�G; �B ; �G and �B : We �nd that the price implications are largely robust to reasonable deviations from
their base case calibrations. Speci�cally, we consider the impacts on the pricing kernel, the risk free rates,
the equity premium, the implied volatilities, and the smirk premium. Details concerning all those results
are available upon request.
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considers 
 = 7:5 and 10. We set  = 2 which is consistent with Bansal, Kiku, and

Yaron (2007) who estimate  to be 2.43 with a standard deviation of 1.3. It is also in line

with Vissing-Jorgensen (2002) who estimate  to be greater than 1: Finally, to allow for a

conservative leverage, we set the leverage parameter � = 3 lower than the values used in

Abel (1990) and Bansal and Yaron (2004).

B. The dynamics of investors�belief updates of disaster intensity

We start by illustrating the updates in belief concerning disaster intensity. The top two

panels of Figure 1 plot the absolute jump size of �; j�+ � �j ; as well as the jump size of
the �ltered intensity, �+p ��p; as a function of �, where � denotes the posterior assessment
that � is in the good regime.

Both jump sizes are zero when � = 0 or 1 �obviously no belief update takes place if the

investors knew the disaster rate for certain. The largest update of �t and �pt in absolute

value occurs roughly at �t = 0:77: This result is di¤erent from the implications of models

where investors learn about the drift in economic fundamentals (e.g., Veronesi (1999); Ai

(2010)). In those models, investors continously update their assessment about �t; which

follows a di¤usive process and takes the greatest variance when �t = 0:5 �the state the

agent is the most uncertain about the parameter regime.

By contrast, the jump in �t in our setup is determined not only by uncertainty but also

by �p: More explicitly, there are two components that interact to determine the magnitude

of belief updates. The �rst is the uncertainty regarding the true disaster intensity and

it reaches its maximum at � = 0:5: The second component, unique to learning about a

counting process, is investors�assessment of the disaster rate �p whose expression is given

by (2.9). We name this component the element of surprise. Intuitively, the strike of a

disaster would be of a great surprise to investors when they have almost forgot about

its possibility, i.e., when �p an instant before disaster is near �
G: Note that at this state

the uncertainty is low since the implied � is close to one. Next, consider the maximum

uncertainty state at � = 0:5: This state corresponds to �p half way between the good

regime
�
�G
�
and the bad regime

�
�B
�
. If a disaster happens at that moment, the element

of surprise is much lower than in the case where �p is close to �
G.

The element of surprise is strictly increasing in � (since �p is decreasing in �), while

the level of uncertainty is hump-shaped and reaches its maximum at a � = 0:5: With

the increase of � starting from � = 0; both elements become stronger until � reaches 0.5.
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With � higher than 0.5, the element of surprise continues to rise while at the same time the

uncertainty decreases. As a result, the largest belief update takes place at � between 0.5

and 1. This novel disaster learning mechanism has an in�uence on the state dependences

of both the equity premium and the volatility of asset returns as we will discuss later.

C. Wealth-consumption and price-dividend ratios

We next turn to the weath-consumption ratio, (W/C) and the price-dividend ratio, (P/D).

To save space, we focus on their values conditional on the normal economic phase, and the

two bottom panels of Figure 1 plot I (�; n) and IS (�; n) as a function of �:

To understand their monotonicity, �rst notice that a positive shock on �p implies a

higher disaster intensity which tends to substantially depress consumption. On one hand,

the income e¤ect makes the agent consume less today which raises the W/C ratio. On

the other hand, the intertemporal substitution e¤ect encourages the agent to borrow from

the future which depresses the W/C. The substitution e¤ect dominates if  > 1; hence,

the negative (or positive) relation between W/C ratio and �p (or �): Since the leverage

parameter � is constant in our economy, a shock to �p that depresses future consumptions

would also depress future dividends. Using a similar logic for the price dividend ratio, the

implied P/D ratio is also increasing in � when  > 1:

In addition to the monotonicity, W/C ratio is convex in � which is attributed to learning

about rare disasters. First, the longer the normal economic phase persists, the more

optimistic investors become concerning future disaster likelihood. As a result, the �ltered

� drifts upward which drives up the aggregate wealth. Second, consider the two scenarios:

i) � moves up toward 0.5 and ii) � moves away from 0.5 toward 1. In the �rst scenario the

impact of investors�optimism is dampened by the larger uncertainty, while in the second

scenario investors�growing optimism and less uncertainty compound to drive up the W/C

ratio.

Similarly, P/D ratio is both increasing and convex in �: In particular, the P/D ratio

becomes more convex in comparaison to the W/C ratio at higher (better) � states: Intu-

itively, when investors are very optimistic (i.e., when � is close to one) and since dividend

is the levered consumption, prices over-react faster with respect to the current dividend

than it is for wealth with respect to consumption.

The above mechanism is similar only in spirit to that identi�ed in Veronesi (1999).

Veronesi emphasizes overreaction to bad news in the good � states. In contrast, investors
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in our model, during the normal phase and good � states, overreact after an extended

period of no news (silence is informative) so that the price rises in a convex way. Also

di¤erent from Veronesi (1999), investors react to the actual news of disaster by a sharp

(discrete) update of their posterior �. As discussed above, this reaction takes its maximal

value at � between 0.5 and 1.

Using P/D ratio as an example to illustrate the implied moment values, we report

in Panel B of Table I both the P/D ratios computed at the long-run average of �t = ��

(Column 2) and the P/D ratios averaged over the stationary distribution of � (Column 6):

Consistent with the data, the P/D ratio is procyclical �P=D (��; n)=83.4 is much higher

than P=D (��; d)=47.2. Furthermore, the average P=D is higher than P=D (��; :) re�ecting

that the P/D ratio is convex in �:

In comparison with the case of no learning about disasters (reported in Column 4, Panel

B of the same table), the implied P/D is nearly an order of magnitude lower. The belief

update upon a disaster strike results in a larger stock market jump as well as a higher

compensation for jump risk. While the implied P/D ratios from the base model still look

high compared with their empirical counterparts, we show in Section VI that the they can

be further reduced in our extended setup where investors also learn about the economic

recovery rate.

D. Short term rate and equity premium

In Panel B of Table I, Columns 3�4 report model implications about the short term interest

rate r and the equity premiumEP computed at �t = ��. For comparison, we report in Panel

A of the same table the implied r andEP from a reduced model without learning, where the

accurately observed � is set equal to ��; the long-run average of the �ltered disaster intensity

�p evaluated at ��. Consistent with the data, r is procyclical while EP is countercyclical.

Conditional on the normal phase, r (��; n) in our model is 1.66% which is much lower than

that implied by the reduced (no-leaning) model. On the other hand, EP (��; n) is 6.99%

which is more than triple that of its no-learning counterpart. As explained earlier, the

agent�s learning behavior strengthens the precautionary saving motive and generates extra

compensation for jump risks, hence the low r (:) and the high EP (:).

To understand the di¤erent moment values conditional on the disaster phase, we use
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EP (:; d) as an example and write down its expressions without and with learning as follow:

EP no (d) = 
� (d)�D (d)� �

 �
Ino (n)

Ino (d)

���1
� 1
!�

Ino;S (n)

Ino;S (d)
� 1
�
; (5.2)

EP (��; d) = 
� (d)�D (d)� �

 �
I (�t; n)

I (�t; d)

���1
� 1
!�

IS (�t; n)

IS (�t; d)
� 1
�
: (5.3)

When risk aversion and EIS parameters are both greater than one, the pricing kernel

and stock price jump in opposite directions since � < 0. As a result, we obtain positive

jump-risk premiums in both cases. By comparison, the implied premiums are much higher

during disaster times than during normal times, which is attributed to the high recovery

rate � arising from the short-lived disaster phase. A similar analysis explains the implied

negative r (:; d) : In the data, a negative real rate tends to emerge when the central bank

cuts the nominal rate to near zero to �ght against recessions, the extreme form of which

is the disaster phase.

As reported in Table I, the implied EP no (d) without learning is higher than EP (��; d) :

This result seems counter-intuitive at the �rst sight, and it is straightforward to understand

considering the forward-looking evolution of disaster intensity in the two di¤erent cases.

In both the learning and the no-learning case, equity premium is computed when the

(posterior) disaster intensity �p equals its long run average �� in both cases. The no-

learning case features a constant disaster intensity at ��. In contrast, �p starts to drift

downward from �� as soon as the economy recovers. Given that normal economic phase

lasts much longer than economic disasters, the compensation for jump risk is determined

by an average intensity lower than the initial value of ��. In the extended model described

later, investors also learn about recovery rates during disaster times. We show that the

extra pessimism of investors in response to the persistence of disaster phase would outweigh

the growing optimism after recovery. As a result, the extended model generates a higher

EP (��; d) than that implied from the no-learning case for any initial value.

Results reported so far are based on moment values evaluated at the long-run average

of the state. Now, we examine the implied r and EP as a function of the state � which

is plotted in Figure 2. To facilitate exposition, we focus on their values conditional on

the normal phase. Another reason for this choice is that disaster time is more interesting

to consider in the extended model in which investors learn also about the intensity of the

economic recovery.
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Starting from � = 0; the top left panel shows that EP (�; n) rises �rst and then drops

with its maximum obtained at � = 0:82: This pattern roughly replicates that of j�+ � �j ;
the absolute jump size of the state, which is plotted in Figure 1. We further plot the

decompositions of EP according to (4.6) in the top right panel of the same �gure, where

the solid line plots the learning-induced premium EPL
t (�; n) de�ned by (4.7); the dotted

line plots the residual component, i.e., EPR (�; n) � EP (�; n) � EPL (�; n) : EPR (�; n)

is decreasing in �; or equivalently, increasing in the posterior estimation of the disaster

rate �p: Intuitively, a higher �p implies a higher jump-risk premium demanded to hold the

aggregate equity when we ignore learning. Unlike EPR (�; n) ; EPL (�; n) is hump-shaped:

it equals zero when the agent has complete information about the two ��regimes in which
no belief update occurs; and it takes its maximum when � is between 0.5 and 1 at which the

agent updates her belief the most. The qualitative di¤erence between the two components

and their comparable magnitudes highlights the impacts of learning on the pricing of the

aggregate equity.

Turning to the short-term rate which is plotted in the bottom left panel of the same

�gure; r (�; n) is initially decreasing and then becomes increasing in � with its minimum

obtained at � between 0.5 and 1. This shape is driven by the learning-induced precau-

tionary saving. While EP (�; n) is concave in �, r (�; n) is a convex function of �: As a

result, taking averages over the stationary distribution region of � yields lower EP (n) and

higher r (n) as compared to their values computed at � = ��: These results are reported in

Column 7�8 in Panel B of Table I.

E. Stock return volatility and "leverage" e¤ect

Conditional on the normal phase, the following two equations give the stock returns volatil-

ity implied from our base case model and from the reduced model without learning, re-

spectively:

volR (�; n) =

vuut�D (n)
2 + �p

 
IS
�
�+t ; d

�
IS (�t; n)

� 1
!2
; (5.4)

volRno (n) =

s
�D (n)

2 + �

�
IS;no (d)

IS;no (n)
� 1
�2
: (5.5)

Evaluated at �p = � = ��; return volatility implied from (5.4) is higher than volRno (n)

which is due to the higher jump size in IS (:) at the presence of learning (Section IV.B).
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Stock returns become even more volatile at higher �p implying that investors are more

concerned about the potential future disasters. As argued in Wachter (2011) and Gabaix

(2011), time-varying disaster intensity is a desirable property in matching the stock return

volatility. Our model endogenously generates this property through learning.

We next examine the state dependence of volR (�; n) which is plotted in the top left

panel of Figure 3. To understand the underlying economics, we plot together in the top

right panel of the same �gure the state dependence of the disaster intensity �p and the

squared jump size
�
IS(�+t ;d)
IS(�t;n)

� 1
�2

: First, �p is decreasing in � meaning less concern about

the potential disasters at the good � regime. Second, jump size is hump-shaped taking

its maximum value at a � between 0.5 and 1 which mimicks that of j�+ � �j : The two
impacts largely cancel out each other at low � states, and work in the same direction at

high � states. As a result, the implied volR (�; n) �rst exhibits no clear monotonicity and

then becomes decreasing in �:

Taking together that volR (�; n) is mostly decreasing in � while IS (�; n) is increasing

in � (bottom right panel of Figure 1), our model provides a theoretical support for the

empirically observed "leverage" e¤ect, i.e., low price level tends to be associated with high

volatility. The "leverage" e¤ect is also discussed in Veronesi (1999) where investors learn

about the unknown drift of the aggregate dividend, and the implied return volatility is

hump shaped in �: In particular, volatility in his model signi�cantly depresses as � drops

to 0.5 from one, resulting in a reduction in uncertainty. In our setup, the reduction in

uncertainty is largely o¤set by the associated higher disaster intensity (the element of

surprise). Also di¤erent from Veronesi (1999) which implicitly considers one economic

phase, return volatility in our model is countercyclical �higher during the disaster phase

than during the normal phase (see the last column in Panel B of Table I)

F. Premiums implicit in equity index options

Unlike many other �nancial variables, time series of option data are relatively short start-

ing from 1980s, and the empirically documented volatility smirks are typically based on

observations during normal times. Given the dynamic of consumption and GDP docu-

mented Barro and Ursua (2008), the US economy did not experience any disaster since the

Great Depression. To facilitate comparison with the data, we focus then on option prices

conditional on the normal phase in the following analysis.

Panel A of Table II reports option pricing implications from the reduced model without
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learning. For comparison, we also report the return volatility in the same panel. The

implied volatility of ATM options (7.48%) is lower than the return volatility (8.97%) which

is counterfactual: empirically ATM options are priced with a premium with respect to the

equity volatility. On the other hand, implied volatility from the 10% OTM put options

(18.6%) is 10.4% higher than that from ATMs implying a pronounced volatility smirk in

the cross sectional plot of option-implied volatilities against moneyness. The reason is well

understood in the literature: as one moves from ATMs to deep OTMs, we are looking at a

sequence of assets that are increasingly sensitive to jumps, hence the higher compensation

for the jump risk in the form of a higher implied volatility.

Turning to our base model, Panel B of Table II reports implications evaluated at the

long-run average of the state, i.e., � = ��: First, the implied ATM volatility is 12.8% rep-

resenting a 2% premium relative to the return volatility of 10.6%, which is consistent with

the data (e.g., Du (2010)). Second, the smirk premium, measured as the di¤erence between

the 10% OTM and the ATM volatility, is 13.8% which is higher than that implied by the

reduced model.14 This result highlights the mechanism that learning-induced compensa-

tion drives up the jump-risk premium as a fraction of the total premium. Since premium

implicit in option pricing largely re�ects the jump risk (e.g, Pan, (2002)), our model gen-

erates a more pronounced volatility smirk attributed to investors�learning behavior than

that suggested by the no-learning case.

We next examine the state dependence of option implied premiums. The bottom left

panel plots the di¤erence between ATM volatility and volR referred to as ATM premium;

the bottom right panel plots the smirk premium. The state dependence of both premiums

resembles that of EP (�; n) plotted in Figure 2 which is attributed to learning about

disaster intensity: Speci�cally, upon the strike of a disaster, investors update their belief

the most when � is between 0.5 and 1 at which uncertainty and the element of surprise

achieves the best tradeo¤ (Section V.B). Consequently, the model generates the highest

jump-risk premium leading to the highest option implied premiums.

Finally, Panel C of Table II reports the unconditional moments associated with option

pricing, computed as averages of moment values over the stationary region of � during the

normal phase: Since the ATM premium and the smirk premium in our model are both con-

cave functions of �; as plotted in Figure 3, their unconditional levels drop relative to their

14While the implied 13.8% premium at �� looks high, we show toward the end of this subsection that
the unconditional smirk premium, ATM premium and 10% OTM volatility are all close to their empirical
levels.
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values conditional on � = ��: In particular, the implied unconditional ATM premium, smirk

premium, and 10% OTM volatility are 1.8%, 12.5%, and 24.3%, which are all comparable

to their empirical levels at 2.4%, 10%, and 25%, respectively.

VI The general model

A. Learning about recovery

In this subsection, we consider the general model where the recovery rate � is also inaccu-

rately observed. Again, we make the simplifying assumption that � only takes two possible

values: �G and �B. Setting �G > �B; we interpret the two possible values as the good and

the bad regime for the economic recovery. � switches between the two possible regimes

according to the following Markov chain:

Pr
�
�t+dt = �Bj�t = �G

�
=  G (6.1)

Pr
�
�t+dt = �Gj�t = �B

�
=  B (6.2)

where  G and  B are known parameters.

Denote by ��t the investors�posterior belief that � is in the good regime at period t,

i.e.,

��t � Pr
�
�t = �GjFt

�
:

Conditional on the disaster phase and by Theorem 19.6 of Lipster and Shiryaev (2001), ��t
evolves according to:

d��t = ���dt+ ��t
�G � �pt
�pt

dM̂t (d; n) ; (6.3)

where

��� � ��
�
�pt � �G

�
+ (1� ��) B � �� G; (6.4)

dM̂t (d; n) is the Poisson process governing the start of recovery under the �ltered measure

with intensity �pt;

�pt � ��t �
G + (1� ��t ) �

B = �B + ��t
�
�G � �B

�
(6.5)

denoting the posterior estimation of � which is increasing in ��t : Either �
�
t or �pt can serve
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as an additional state in the general model.

To understand the agent�s learning about recovery, we start from the long-run average

��t = ��
� =

 B
 G +  B

; (6.6)

under which ��� in (6.4) reduces to �
�
t

�
�p � �G

�
< 0: If no economic recovery starts over

the interval [t; t+ dt] ; the agent becomes less certain about recovery, and thus revises

downward the likelihood of the good ��regime. By contrast, if an economic recovery takes
place within [t; t+ dt] ; the agent substantially revises upward the good ��regime by

��;+ � �� = ��
�G � �p
�p

=

�
�G � �B

�
�p

�� (1� ��) > 0; (6.7)

The associated upward jump in �pt is

�+pt � �pt =
�
��;+ � ��

� �
�G � �B

�
> 0:

Intuitively, upon the current recovery, the agent becomes con�dent that the economy would

likely recover following the strike of future disasters.

The top left panel of Figure 4 illustrates the jump size ��;+ � �� as a function of �� ;

where �� denotes the posterior assessment that recovery rate is in good regime. Di¤erent

from learning about the disaster rate, ��;+ � �� take its maximum when �� is around

0.35: To see the reason, �rst note that uncertainty about the two ��regimes is hump-
shaped in �� and takes the maximum at �� = 0:5: Second, the implied jump size is also

determined by �p referred to as the element of surprise. Intuitively, recovery would be least

surprising when investors are optimistic, i.e., when vp is near vG
�
> vB

�
: Taken together,

both uncertainty and surprise become stronger with the decrease of �� starting from �� = 1

until �� reaches 0.5. For �� lower than 0.5, the element of surprise continues to rise while

uncertainty decreases at the same time. As a result, the largest belief update takes place

at �� between 0 and 0.5.

In contrast to the base model, the mechanism of learning in the general model is alive

during both the disaster and the normal economic phases. On one hand and during the

disaster phase, investors form a posterior belief about the arrival of recovery according to

(6.3)�(6.4) and stop updating their beliefs about the strike of disasters. The longer the

disaster lasts, the more pessimistic investors become so that they negatively update the
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�ltered recovery rate. However, upon the start of recovery, investors gain more con�dence

about the ability of the economy to bounce back, and as a result they substantially revise

upward the intensity of economic recovery. On the other hand and during the normal

phase, investors form a posterior estimation of disaster likelihood according to (2.7)�(2.8),

and stop updating their beliefs about future recoveries. In this case, the longer the good

economic condition persists, the more optimistic investors become, resulting in a negative

update of the �ltered disaster intensity. This negative trend persists until the actual

strike of an economic disaster, at which investors become paranoid and substantially revise

upward the probabillty of future disasters.

B. Model implications

Using a similar procedure as the ones used in the base model, we numerically solve the

general model and the details are in Appendix C. To generate quantitative implications,

we set the long-run average of the recovery rate �� equals to 1=3 which is consistent with its

base level. Next, we set  G = 0:025 and  B =  G=3 which implies that the recovery rate in

its stationary region points to the "good" regime with probability  B=
�
 G +  B

�
= 0:25:

Next, we impose

�G =
��

2

 G +  B

 B
; �B =

��

2

 G +  B

 G
(6.8)

so that the long-run intensity is indeed ��. Given our calibrations of
�
 G;  B

�
; �G and

�B are 0.66 and 0.22, respectively. Thus, conditional on the disaster phase, the recovery

takes 1.5 years on average when � = �G; and takes 4.5 years on average when � = �B:

Empirically, the Great Depression lasts from 1929�1933 which is close to the duration

indicated by �B: If we treat the most recent economic recession identi�ed by NBER as

another disaster phase, then its duration �ts that suggested by �G.15 Finally, all other

parameters remain at their base case levels as described in Section V.A.

Conditional on phase s 2 fn; dg ; we denote by IS (�; �v; s) the price-dividend ratio.
� and �v are the two states characterizing uncertainty about both disaster and recovery

rates, respectively. Given our model calibration, the top right panel of Figure 4 (solid line)

plots IS (�; �v; d) as a function of �v; where � is �xed at its long run average ��. First, the

longer the disaster phase persists, the more pessimistic the investors become concerning

15As in the base model, we conduct extensive comparative analysis with respect to the four parameters
related to learning about recovery: �G; �B ;  G and  B :We �nd model implications are robust to reasonable
deviations from their reported calibrations.
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the likelihood of recovery. As a result, the �ltered �v drifts downward which is associated

with a decreasing price. Second, consider the two scenarios: i) �v drops toward 0.5 and

ii) �v drops from 0.5 to 0. In the �rst scenario, investors� pessimism compounds with

the increased uncertainty to drive down the P/D ratio, while in the second scenario the

impact of investors�pessimism is dampened by less uncertainty. As a result, IS (��; �v; d)

is increasing and convex in �v during the disaster phase.

The above mechanism is novel in the literature �investors update their beliefs about

economic recovery in the absence of any news. In addition, this mechanism induces both

a dramatic price drop at the start of bad times when �v is relatively high, and moderate

drops at later stage of the disaster time when �v becomes relatively low. This result is

consistent with the empirical observations that stock market crashes at the start of bear

markets, and becomes relatively stable toward the end of the bear market.

Column 2�5 in Panel A of Table III report model implications about the P/D ratio, short

term interest rate r; equity premium EP; and return volatility volR computed at (�t; �vt ) =

(��; ��v). By allowing investors to learn about recovery rate, the growing pessimism during

the disaster phase compounds the impact of getting paranoid upon the strike of disasters.

As a result, compared to the base model, the P/D ratio depresses further, investors demand

higher compensation to hold the aggregate equity, and short term rate further decreases.

Empirically, the S&P500 index reaches its lowest level in June 1932 towards the end

of the Great Depression, and it bounces back by more than three times over the next

four years producing an average return of 32.5% on an annual basis. If we use subsequent

realized returns to proxy for the expected returns, the observation lends support to the

37.4% expected equity premium during the disaster phase that is implied from the general

model (Table III).

Columns 6�9 in the same panel report the corresponding unconditional moments (the

unconditional moment refers to an average over the stationary distribution of � and �v).

In the last row of the table we take the weighted average with respect to the economic

phases. The implied r; EP; and volR are 1.49%, 7.73%, and 13.1%, respectively. These

numbers are reasonable matches to their empirical levels except for the P/D ratio. The

implied P/D ratio (51.3) is still high relative to its long-term norm (25�35), but it matches

the observed levels since the mid 1990s (e.g., Lettau, Ludigson, and Wachter, (2007)).

Turning to the state dependences, the bottom left two panels of Figure 4 plot EP and

r as a function of �v during the disaster phase, where � is �xed at its long run average.

From the bottom left panel, EP (��; �v; d) rises �rst and then drops with the increase of �v;
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which re�ects the hump shape of �v;+��v. EP reaches its maximum at �v higher than 0.5.
To understand the state dependence, we plot together in the top right panel of the same

�gure the model-implied IS (��; �v; d) (solid line) and IS (��; �v;+; d) (dashed line): While

�v;+ � �v takes the maximum at around �v = 0:35; the convexity of IS (:) as the function

of �v implies that IS (��; �v;+; d)� IS (��; �v; d) takes the maximum at �v > 0:5: The shape

of EP (��; �v; d) mimicks that of the IS (:) ; the stock price jump size which controls the

quantity of the jump risk. The inverted pattern is found in r (��; �v; d) : this time learning

creates the stronger precautionary saving motives which drives down the short term rate.

As is the case in the base model, we report in Panel B & C of Table III the option

implied volatilities conditional on the normal economic phase. For comparison, we also

report the corresponding return volatilities. Compared to that implied from the base

model, learning about recovery during disaster time does not change much the implied

volatilities during the normal time.16 The implied ATM premium, smirk premium, and

10% OTM volatility are (4%, 15.1%, 28.1%) when evaluated at (�t; �vt ) = (��; ��
v) (Panel

B of Table III), and (2.9%, 12.4%, 25.2%) after taking the average with respect to the

state distributions (Panel C of Table III). Speci�cally, the unconditional values deliver

reasonable matches to the their empirical levels at 2.4%, 10%, and 25%, respectively.

VII Conclusions

This article proposes a model within the paradigm of Rietz-Barro hypothesis that is able to

explain various asset pricing regularities in the equity, bond and options markets. Investors

learn about disaster probabilities in the base model and also learn about the recovery rate in

the general model. In the absence of information concerning economic disasters, investors

decrease their posterior assessment of disaster probabilities. The longer good economic

conditions persist, the larger the increase in asset prices. However, upon the strike of

a disaster, two compounding e¤ects take place. First, investors become paranoid about

future disaster likelihood and instantaneously revise upward their posterior beliefs about

the disaster intensity. Second, the longer the disaster period persists the more pessimistic

investors become concerning the potential economic recovery. As a result, a large and

persistent price correction takes place as well as an increase in volatilities during this

phase.

16From Panel A of Table III, we see that learning about recovery signi�cantly increases the return
volatility compared to the implication from the base model during the disaster phase.
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Our model features no jumps in the level of consumption. The model calibration is solely

based on US experience. It generates time-varying disaster and recovery intensities which

are useful to explain asset volatilities and �leverage�e¤ects. Our framework di¤erentiates

the pricing of jump risks from that of di¤usive risks which turns out to have a large impact

in explaining option market regularities. Finally, we �nd that a recursive utility when

combined with learning about rare disasters is able to explain asset pricing puzzles with

reasonably low consumption moments autocorrelation.

This paper focuses on particular types of events: the strike of disasters and subsequent

recoveries. By changing the calibration of the consumption process and the switching

intensity, our framework can analyse the impact of investors learning about business cycle

on �nancial markets. Another likely and more interesting direction to pursue is to allow

investors to learn about the likelihood of economic disasters and recoveries in the economy

from the observed equity market crashes. Doing so can shed light on the importance of

the feedback e¤ect from �nancial markets to aggregate economic variables.

Appendix
A. Derivations for the base model

A.1. Aggregate wealth and short term rates

This subsection derives the model-implied restrictions for the W/C ratio, I (�; n), I (�; d),
and I (�; r) which are conditional on the normal and the disaster phase, respectively. By
Ito�s lemma, the value function Jt given by (3.1) follows:

dJt
Jt
= (1� 
)� (n)�1

2

 (1� 
)� (n)2+�

1

I (�; n)

dI (�; n)

d�
��+

"�
I (�+; d)

I (�; n)

��
� 1
#
dM̂t (n; d)

(A.1)
dJt
Jt
= (1� 
)� (d)� 1

2

 (1� 
)� (d)2 +

"�
I (�; r)

I (�; d)

��
� 1
#
dNt (d; r) ; (A.2)

dJt
Jt
= (1� 
)� (r)� 1

2

 (1� 
)� (r)2 +

"�
I (�; n)

I (�; r)

��
� 1
#
dNt (r; n) ; (A.3)

conditional on st = n; st = d; and st = r; respectively, where �� is the drift of d� de�ned
by (2.8); we�ve used that the agent stops updating �t conditional on the disaster phase and
the recovery phase. On the other hand, the di¤erential form for recursive utility (de�ned
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by (2.1)) is:
dJt = �f (Ct; Jt) dt+ dHt; (A.4)

where Ht is some martingale. By combining the aggregator with the value function, we
can rewrite f (:) as

f (Ct; Jt) = �
J

I (�; s)
� ��J: (A.5)

Taking expectation on both sides of (A.4),

Et (dJt) + f (Ct; Jt) = 0; (A.6)

where Et (:) is with respect to the �ltered measure. In (A.6), substituting for Et (dJt) from
(A.1)�(A.2) and substituting for f (Ct; Jt) from (A.5), we obtain

1

I (�; n)
= �+(�� 1)� (n)+1

2

 (1� �)� (n)2� 1

I (�; n)

dI (�; n)

@�
����p

1

�

"�
I (�+; d)

I (�; n)

��
� 1
#

(A.7)
1

I (�; d)
= � + (�� 1)� (d) + 1

2

 (1� 
)� (d)2 � v

1

�

"�
I (�; r)

I (�; d)

��
� 1
#
: (A.8)

1

I (�; r)
= � + (�� 1)� (r) + 1

2

 (1� 
)� (r)2 � �

1

�

"�
I (�; n)

I (�; r)

��
� 1
#
: (A.9)

for the normal phase, the disaster phase, and the recovery phase, respectively.
By applying Ito�s lemma with jumps to (3.3) conditional on each of the two economic

phases, we obtain the expression for the short-term interest rate:

rt (�; n) = ��+
1� �

I (�; n)
+
��1

2

 (1 + �)� (n)2�(� � 1) 1

I (�; n)

dI (�; n)

d�
����p

"�
I (�+; d)

I (�; n)

���1
� 1
#
;

(A.10)

rt (�; d) = �� +
1� �

I (�; d)
+ 
�� 1

2

 (1 + �)� (d)2 � �

"�
I (�; r)

I (�; d)

���1
� 1
#
; (A.11)

rt (�; r) = �� +
1� �

I (�; r)
+ 
�� 1

2

 (1 + �)� (r)2 � �

"�
I (�; n)

I (�; r)

���1
� 1
#
; (A.12)

where we�ve used that � stops evolving conditional on the disaster and the recovery phase.
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In (A.10) and conditional on the normal phase, substituting for 1
I
from (A.7) yields:

r (�t; n) = �+�� (n)�1
2

 (1 + �)� (n)2��p

1

�

24 I ��+t ; d�
I (�t; n)

!�

� 1

35��pt I ��+t ; d�
I (�t; n)

!��1 "
1�

I
�
�+t ; d

�
I (�t; n)

#
;

(A.13)
where we�ve used the de�nition of � given by (3.2. By a similar procedure, we obtain the
short term rate conditional on the disaster and the recovery phase:

r (�t; d) = �+�� (d)�1
2

 (1 + �)� (d)2�v1

�

"�
I (�t; r)

I (�t; d)

��
� 1
#
�v
�
I (�t; r)

I (�t; d)

���1 �
1� I (�t; r)

I (�t; d)

�
:

(A.14)

r (�t; r) = �+�� (r)�1
2

 (1 + �)� (r)2�v1

�

"�
I (�t; n)

I (�t; r)

��
� 1
#
��
�
I (�t; n)

I (�t; r)

���1 �
1� I (�t; n)

I (�t; r)

�
:

(A.15)

A.2. Aggregate stock

This subsection derives the model-implied restrictions for the P/D ratio, IS (�t; n) and
IS (�t; d) ; which is conditional on the normal and the disaster phase, respectively. The
point is to pursue the fundamental asset pricing relationship (e.g., chapter 1 of Cochrane,
2005), i.e.,

EPt = Et

�
dSt
St

�
=dt+

Dt

St
� rt; (A.16)

where rt is the short-term rate given by (A.13)�(A.14); EPt is the equity premium given
by (3.14)�(3.15); Dt

St
= 1

IS(�t;st)
which denotes the dividend yield conditional on st 2 fn; dg :

From the stock return processes (3.10)�(3.11),

Et

�
dSt
St
jst = n

�
= �D (n) +

1

IS (�t; n)

dIS (�t; n)

d�
�� + �p

 
IS
�
�+t ; d

�
IS (�t; n)

� 1
!
; (A.17)

Et

�
dSt
St
jst = d

�
= �D (d) + �

�
IS (�; n)

IS (�; d)
� 1
�
: (A.18)

In (A.16) and conditional on st = n, substituting for EP and Et
�
dSt
St

�
from (3.14) and
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(A.17) yields

rt (n) + 
� (n)�D (n)� �p

 �
I (�+; d)

I (�t; n)

���1
� 1
! 

IS
�
�+t ; d

�
IS (�t; n)

� 1
!

= �D (n) +
1

IS (�t; n)

dIS (�t; n)

d�
�� + �p

 
IS
�
�+t ; d

�
IS (�t; n)

� 1
!
+

1

IS (�t; n)
: (A.19)

Next, substituting for rt (n) from (A.13) in the above equation yields:

1

IS (�t; n)
= � + �� (n)� �D (n)�

1

2

 (1 + �)� (n)2 + 
� (n)�D (n)�

1

IS (�t; n)

dIS (�t; n)

d�
��

��p
1

�

24 I ��+t ; d�
I (�t; n)

!�

� 1

35� �p

 
I
�
�+t ; d

�
I (�t; n)

!��1�
IS (�+; d)

IS (�t; n)
� I (�+; d)

I (�t; n)

�
;(A.20)

By a similar procedure, we obtain the restriction for IS (�t; d):

1

IS (�t; d)
= � + �� (d)� �D (d)�

1

2

 (1 + �)� (d)2 + 
� (d)�D (d)

�v1
�

"�
I (�t; d)

I (�t; n)

��
� 1
#
� v

�
I (�t; n)

I (�t; d)

���1�
IS (�t; n)

IS (�t; d)
� I (�t; n)

I (�t; d)

�
:(A.21)

B. Numerical procedures for the base model

B.1. Boundary conditions for I (:) and IS (:)

Unlike (A.8), (A.7) is a di¤erential equation driven by the agent�s belief update during the
normal phase. To obtain the boundary condition for (A.7), we set

�� = ��
�
�G � ��

�
+ (1� �)�B � ��G = 0

which has two roots. Denote by �0 the root that lies between zero and one, at which (A.7)
degenerates to

1

I (�0; n)
= � + (�� 1)� (n) + 1

2

 (1� �)� (n)2 � �0p

1

�

24 I ��+0 ; d�
I (�0; d)

!�

� 1

35 : (A.22)
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In (A.22),

�0 =

�
�G � �B + �B + �G

�
�
q�

�G � �B + �B + �G
�2 � 4 ��G � �B

�
�B

2
�
�G � �B

� ; (A.23)

�0p � �0�
G + (1� �0)�

B (A.24)

which denotes the posterior estimation of disaster intensity at �0;

�0;+ � �0
�G

�0p
(A.25)

which denotes the updated value of � following the strike of a disaster at the state �0:
(A.7)�(A.8) together with the boundary condition (A.22) fully characterize the model-
implied W/C ratios.
Like that for I (:) ; (A.21) is an algebraic equation, whereas (A.20) is a di¤erential

equation driven by the agent�s belief update during the normal phase. Again we set � = �0

in (A.20) to obtain its boundary condition of

1

IS (�0; n)
= � + �� (n)� �D (n)�

1

2

 (1 + �)� (n)2 + 
� (n)�D (n) (A.26)
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where �0;+ and �0p are de�ned by (A.25) and (A.24). (A.20)�(A.21) together with the
boundary condition (A.26) fully characterize the model-implied P/D ratios.

B.2. Solving I (:) and IS (:)

We use three steps to formulate the approximate solutions to (I (�; n) ; I (�; d)) using
the collocation method (e.g., Miranda and Fackler, 2002). The procedures for solving�
IS (�; n) ; IS (�; d)

�
are very similar, and we omit the details to save space.

Step 1: choice of basis functions. We choose the Chebyshev polynomials de�ned on
[�1; 1] which are given by

q0 (z) = 1; q1 (z) = z; q2 (z) = 2z
2 � 1;

and computed recursively by

qj (z) = 2zqj�1 (z)� qj�2 (z)

for polynomials with orders higher than two. For the more general domains [a; b] ; these
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polynomials become pj (x) under the transformation

x = a+
(z + 1) (b� a)

2
:

When using Chebyshev polynomials up to the mth order to approximate some unknown
functional, numerical analysis and empirical experience both suggest that polynomial ap-
proximants over the interval [a; b] should be constructured by interpolating the unknown
function at the Chebyshev nodes de�ned by

xi =
a+ b

2
+
b� a

2
cos

�
n� i+ 0:5

n
�

�
for i = 1; :::;m; (A.27)

where � denotes the ratio of a circle�s circumference to its diameter. For the probability
variable � in our model; a = 0, and b = 1.
Step 2: residual operator. Conditional on the normal phase, let Ln be the residual

operator associated with (A.7) and its boundary condition (A.22), i.e.,

Ln (I (�; n)) = � + (�� 1)� (n) + 1
2

 (1� �)� (n)2 � 1

I (�; n)

dI (�; n)

@�
��

��p
1

�

"�
I (�+; d)

I (�; n)

��
� 1
#
� 1

I (�; n)
; (A.28)

Ln (I (�0; n)) = �+(�� 1)�+1
2

 (1� �)�2��0p

1

�

24 I ��+0 ; d�
I (�0; n)

!�

� 1

35� 1

I (�0; n)
: (A.29)

Similarly, let Ld (I (�; d)) be the residual operator associated with (A.8) conditional on the
disaster phase, i.e.,

Ld (I (�; d)) = � + (�� 1)� (d) + 1
2

 (1� �)� (d)2 � v

1

�

"�
I (�; n)

I (�; d)

��
� 1
#
� 1

I (�; d)
:

(A.30)

Denote by
�
Î (�; n) ; Î (�; d)

�
the solution to (A.7)�(A.8) and (A.22). In terms of the above

operators, we must have

Ln
�
Î (�; n)

�
= Ln

�
Î (�0; n)

�
= 0: (A.31)

Ld
�
Î (�; d)

�
= 0: (A.32)

Step 3: We appeal to the Chebyshev Interpolation Theorem (e.g., Judd (1998)) to �nd
an approximate solution to (A.31)�(A.32), which we denote by

�
IC (�; n) ; ID (�; d)

�
: The

35



approximation is obtained by evaluating L
�
Î (:)

�
at a chosen set of points, and setting it

to zero at each of these points. More speci�cally, we write

I (�; s) =

mX
j=1

cj (s) pj (�) ;

for s 2 fn; dg ; where fcj (s)gmj=1 are basis coe¢ cients to be determined. For both IC (�; n)
and IC (�; d) ; we use basis Chebyshev polynomials up to the 15th order: Adding polynomi-
als with higher orders change little the results. To solve (A.31), we set L (I (�; n)) = 0 at
the �rst 14 Chebyshev nodes given by (A.27) with m set to 14. This restriction, together
with L (I (�0; n)) = 0, yields a total of 15 equations for determining fcj (n)g15j=1. To solve
(A.32), we set L (I (�; d)) = 0 at the �rst 15 Chebyshev nodes, which yields 15 equations
for determinating fcj (d)g15j=1.
Chebyshev basis polynomials in combination with Chebyshev interpolation nodes yield

an extremely well-conditioned interpolation equation that can be accurately and e¢ ciently
solved. To show it, Panel A of Figure A1 plots the resduals of L

�
IC (�; n)

�
and L

�
IC (�; d)

�
at a re�ned grid of 50 evenly spaced points between zero and one. The implied residuals
oscillate fairly evenly through the domain [0; 1] with the implied pricing errors generally
below 2�10�5 and even lower for that of L

�
IC (�; d)

�
: Panel B of the same �gure plots

residuals in the similar way for the P/D ratio which again shows fairly low pricing errors.

B.3. Computing option prices

We �rst describe the procedure for simulating the terminal option payo¤ on a typical path:
In particular, we start from (�; s) = (�0; s0) and normalize the initial values of both stock
price P0 and pricing kernel �0 to one.
1. For each 0 � t � � ; check the current economic phase st and compute variables

related to jumps of the wealth-consumption ratio. For example, if st = n; the jump
intensity is �pt de�ned by (2.9) and the jump size of W/C ratio equals

I
�
�+t ; d

�
I (�t; n)

=
I
�
�t

�G

�pt
; d
�

I (�t; n)
:

2. Simulate the evolution of the state �t; the dividend Dt; and the pricing kernel �t.
In particular, if st = d; simulate (�t; Dt;�t) according to (2.7)�(2.8), (3.7), and (3.4). If
st = d; stop updating �t; and simulate Dt and �t according to (3.7) and (3.5):
3. Compute the terminal P� using IS (�� ; s� ) �D� : The terminal payo¤ for a put option

characterized by (� ;K) is thus given by ��
�0
max(K � P� ; 0); where � and K denote the

time to maturity and the strike price, respectively.
By simulating a large number of paths starting from the same (�0; s0) and taking

average of the terminal payo¤s, we obtain the model-implied put option price which we
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denote by IO (�0; s0) ; where we focus on s0 = n in the paper: Next, we approximate
IO (�0; s0) through

IO (�0; s0) =

mX
j=1

cOj (s0) pj (�0) (A.33)

where pj (�0) is the jth order Chebyshev polynomial introduced Appendix B.2;
�
cOj (s0)

	m
j=1

are basis coe¢ cients to be determined. Again, we use Chebyshev polynomials up to the
15th order; and set

mX
j=1

cOj (s0) pj (�0)� IO;s (�0; s0) = 0 (A.34)

at the �rst 15 Chebyshev nodes given by (A.27) with a = 0 and b = 1: The implied
restrictions from (A.34) exactly identify

�
cOj (s)

	m=15
j=1

: Finally, we simulate a large number
of realizations of the probability state in its stationary distribution region denoted by
f�igNi=1; and the approximate form (A.33) allows us to conveniently compute the implied
option price conditional on the given �i: Taking the average of IO (�i; s) for all i, we obtain
the model-implied unconditional option price for the given economic phase s0:

C. Solving the general model

C.1. Di¤erential equations

Using a similar procedure to that described in Appendix A.2., we obtain the following
di¤erential equations for the W/C ratio in the general model:

1

I (�; �v; n)
= � + (�� 1)� (n) + 1

2

 (1� �)� (n)2

� 1

I (�; �v; n)

@I (�; �v; n)

@�
�� � �p

1

�

"�
I (�+; �v; d)

I (�; �v; n)

��
� 1
#
; (A.35)

1

I (�; �v; d)
= � + (�� 1)� (d) + 1

2

 (1� �)� (d)2

� 1

I (�; �v; d)

@I (�; �v; d)

@�v
��� � vp

1

�

"�
I (�; ; �v;+; n)

I (�; ; �v; d)

��
� 1
#
;(A.36)

where �� and �
�
� are given by (2.8) and (6.4); we�ve used that � stops evolving during the

disaster phase, and that �v stops evolving during the normal phase. Similar to the base
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model, the two boundary conditions for the above di¤erential equations are:

1

I (�0; �v; n)
= �+(�� 1)� (n)+ 1

2

 (1� �)� (n)2��0p

1

�

24 I ��+0 ; �v; d�
I (�0; �v; d)

!�

� 1

35 ; (A.37)
1

I (�; �v0; d)
= �+(�� 1)� (d)+ 1

2

 (1� �)� (d)2�v0p

1

�

24 I ��; ; �v;+0 ; n
�

I (�; ; �v0; d)

!�

� 1

35 ; (A.38)
where

�v0 =

�
�G � �B +  B +  G

�
�
q
(�G � �B +  B +  G)

2 � 4 (�G � �B) B

2 (�G � �B)
; (A.39)

�0; �
0
p; and �

+
0 are given by (A.23)�(A.25);

�v;+0 � �v0
�G

�0p
; (A.40)

�0p � �v0�
G + (1� �v0) �

B (A.41)

�� = ��
�
�G � ��

�
+ (1� �)�B � ��G = 0:

Derivations of di¤erential equations and boundary conditions for the P/D ratio IS (:) are
similar, and we omit the details.

C.2. Approximate solution in the general model

We still use I (:) as the example to illustrate the Chebyshev approximation of solutions
to the general model in which the recovery rate is also inaccurately observed. Given that
we have two states now: � and �v; we need to construct a two-dimensional function basis
de�ned on

S � f(�; �v) : 0 � � � 1; 0 � �v � 1g :
This is done through the tensor product of univariate Chebyshev polynomials adjusted to
the domain [0; 1]2 ; i.e.,

pj1;j2 (�; �
v) = pj1 (�) pj2 (�

v) ;

where pj1 (�) and pj2 (�
v) are both one-dimensional Chebyshev polynomials restricted to

[0; 1]. The W/C ratio is thus approximated by

I (�; �v; s) =

m2X
j2=1

m1X
j1=1

cj1;j2 (s) pj1;j2 (�; �
v) ;
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where fcj1;j2 (s)g represent m = m1m2 basis coe¢ cients to be determined. On the other
hand, we form a grid of m = m1m2 interpolation nodes by forming the tensor product of
univariate interpolation nodes which are denoted by��

�j1 ; �
v
j2

�
: j1 = 1; :::;m1; j2 = 1; :::;m2

	
:

Similarly to that for the base model, we use Ln as the residual operator associated
with di¤erential equation and boundary condition for I (:; n) given by (A.35) and (A.37),
and use Ld as the residual operator associated with di¤erential equation and boundary
condition for I (:; d) given by (A.36) and (A.38). Denote by

�
Î (�; �v; n) ; Î (�; �v; d)

�
the

solution to (A.35)�(A.38), which must satisfy:

L
�
Î (�; �v; n)

�
= L

�
Î (�0; �

v; n)
�
= 0: (A.42)

L
�
Î (�; �v; d)

�
= L

�
Î (�; �v0; d)

�
= 0: (A.43)

To solve (A.42), we set L (I (�; �v; n)) = 0 at the (m1 � 1)m2 nodes formed as the tensor
product of the �rst m1�1 Chebyshev nodes for � and the �rst m2 Chebyshev nodes for �v:
We then set L (I (�0; �v; n)) = 0 at the m2 Chebyshev nodes for �v: Altogether, we have
m1m2 restrictions which exactly identify the coe¢ cients for the normal phase, fcj1;j2 (n)g :
To solve (A.43), we set L (I (�; �v; d)) = 0 at the m1 (m2 � 1) nodes formed as the tensor
product of the �rst m1 Chebyshev nodes for � and the �rst m2� Chebyshev nodes for
�v: We then set L (I (�; �v0; d)) = 0 at the m1 Chebyshev nodes for �: Put together, we
again have m1m2 restrictions which exactly identify the coe¢ cients for the disaster phase
fcj1;j2 (d)g : In the actual implemention, we choose m1 = m2 = 15; and the program for
solving the implied 225� 2 equations converge quickly with fairly high accuracy.
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Figure 1: Jump sizes of the state and the value-fundamental ratios in the
base model. In the base model, � denotes the posterior probability that the disaster rate
� is in the good regime. The top two panels plot the state dependences of the absolute jump
sizes of � and �p; where �p denotes the posterior estimation of �: The bottom two panels
plot the state dependences of the wealth-consumption ratio I (:) and the price dividend
ratio IS (:) conditional on the normal phase.
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Figure 2: State dependences of equity premium and short-term rate. The
top two panels plot the state dependences of the equity premium conditional on the normal
phase, EP (�; n) ; and its decompositions. In particular, the part of EP (�; n) attributed
to learning is given by (4.7). The bottom left panel plots the state dependences of the
short-term rate conditional on the normal phase.
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Figure 3: State dependences of return volatility and option implied premi-
ums in the base model. The top left panel plots the state dependence of the stock
return volatility and the top right panel plots the decomposition of its jump component

in terms of i) disaster intensity �p; and ii) the squared jump size
�
IS(�+t ;d)
IS(�t;n)

� 1
�2

: The

bottom left panel plots the state-dependences of ATM premium de�ned as the di¤erence
between ATM implied volatility and the total stock return volatility. The bottom right
panel plots the state-dependences of smirk premium de�ned as the di¤erence between 10%
OTM implied volatilities and the ATM implied volatilities. All moments are conditional
on the normal phase.
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Figure 4: State dependences in the general model. � and �� denote the posterior
probability that the disaster rate � is in the good regime and the posterior probability that
the recovery rate � is in its good regime, respectively, which serve as the states for pricing.
In all panels, we plot state dependences as the function of �� while � is �xed at its long-run
average ��. The top left panels plot the jump sizes of �p; the posterior estimation about the
recovery rate. The top right panel plots the P/D ratio conditional on the disaster phase.
The bottom two panels plot the equity premium and the short term rate, both of which
are conditional on the disaster phase.
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Figure A1: Residuals from computing the W/C ratio I and P/D ratio IS

using Chebyshev interpolation. Within our setup, the implied W/C ratio I (:) and
P/D ratio IS (:) cannot be solved analytically. We thus resort to its numerical solution
using Chebyshev interpolation with details in Appendix B.2 for the base model and in
Appendix C.2 for the general model. The top and the bottom panel of Figure A1 plot the
solution residuals for I (:) and IS (:) ; respectively, in the base model conditional on both
the normal phase and the disaster phase.
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Table I. Implications about the P/D ratio, the short-term rate, the equity
premium, and the return volatility

Panel A reports implications about the P/D ratio, the short-term rate, the equity premium,
and the return volatility in a degenerated model without learning. We report moment
values conditional on both the normal and the disaster phases, as well as their weighted
averages across the two economic phases with weights set proportional to the durations of
the two phases.Panel B reports implications of the same moments from the base model, in
which the posterior probability that the disaster rate � is in the good regime, denoted by
�; serves as the state. We report both the conditional moment values evaluated at ��, the
long-run average of �; and the unconditional moment values, computed as averages of the
moment realizations over the stationary region of �:

Panel A: without learning
P=D r (%) EP (%) volR (%)

normal 894 2.63 2.29 8.97
disaster 437 -1.85 26.6 62.1
average 872 2.41 3.48 11.6

Panel B: the base model
evaluated at � = �� averages over ��distribution
P=D r (%) EP (%) volR (%) P=D r (%) EP (%) volR (%)

normal 83.4 1.66 6.99 10.6 102 2.11 4.88 9.93
disaster 47.2 -1.65 19.3 47.0 55.7 -1.68 20.2 48.7
Average 82.1 1.49 7.59 12.4 99.3 1.93 5.63 11.8
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Table II. Implications about option pricing

Table III reports implications about option pricing in terms of the stock return volatility
volR; the implied volatilities from ATM options, and the implied volatilities from 10%
OTM options. Panel A reports implications from a degenerated model without learning.
Panels B&C reports implications of the same moments from the base model. In this case,
the posterior probability that the disaster rate � is in the good regime, denoted by �; serves
as the state. More speci�cally, Panel B reports values computed at ��, the long-run average
of �; Panel C reports the unconditional values computed over the stationary region of �:
All reported moment values are for the normal phase.

Panel A: without learning
volR (%) ATM vol (%) OTM vol (%)
8.97 7.48 17.9

Panel B: base model: evaluated at � = ��
volR (%) ATM vol (%) OTM vol (%)
10.6 12.8 26.6

Panel C: base model: averages over ��distribution
volR (%) ATM vol (%) OTM vol (%)
9.93 11.8 24.3
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Table III. Implications from the general model

Panel A reports implications about the P/D ratio, the short-term rate, the equity premium,
and the stock return volatility implied from the general model. In this case, the posterior
probability that the disaster rate � is in the good regime and the posterior probability
that the recovery rate � is in its good regime, denoted � and �� ; respectively, serve as the
states. We report moment values conditional on the normal and disaster phases, as well
as their weighted averages across the two economic phases with weights set proportional
to the durations of the two phases. In addition, we report both the moment values eval-
uated at (�; �v) = (��; ��v), where �� and ��v are the long-run average of � and �v; and the
unconditional moment values, computed as averages of the moment realizations over the
stationary region of � and �v: Panel B&C reports option pricing implications during the
normal phase in terms of the stock return volatilities, volR; the implied volatilities from
ATM options, and the implied volatilities from 10% OTM options. Again, we report both
the conditional moments evaluated at (�; �v) = (��; ��v) and the unconditional moments
computed as averages of the moment realizations over the stationary region of � and �v:
All reported moments are conditional on the normal phase.

Panel A: bond and stock pricing
Evaluated at (�; ��) = (��; ���) Averages over (�; ��) distribution
P=D r (%) EP (%) volR (%) P=D r (%) EP (%) volR (%)

normal 41.3 1.09 8.22 10.3 52.6 1.69 6.16 9.71
disaster 20.1 -2.46 37.4 76.5 24.5 -2.30 38.3 78.4
Average 40.3 0.91 9.64 13.3 51.3 1.49 7.73 13.1

Panel B: option pricing: evaluated at (�; ��) = (��; ���)
volR (%) ATM vol (%) OTM vol (%)
10.3 14.3 28.1

Panel C: option pricing: averages over (�; ��) distribution
volR (%) ATM vol (%) OTM vol (%)
9.71 12.8 25.2
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