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I. Introduction 

This study examines the statistical problems related to the presence of influential 

observations or outliers in financial data. The objectives are: (1) to summarize the various 

methods used to identify and adjust for influential observations in the accounting literature; 

(2) to assess the effectiveness of such methods in commonly used research designs; (3) to 

assess the effectiveness of new methods proposed by the statistics literature; and, (4) to 

provide guidance for future studies that need to identify and correct for the presence of 

influential observations.  

 Although a precise definition is hard to come by, influential observations are 

generally considered to be data points that have a large impact on the calculated values of 

various estimates (e.g, mean, regression coefficients, standard errors, etc.), while outliers are 

data points that are located unusually far from the mean of a sample. Influential observations 

or outliers are not necessarily problematic, but researchers should be aware of their potential 

effect on statistical inferences.1 Belsley et al. (1980, p. 3) remark: 

“Unusual or influential data points, of course, are not necessarily bad data points; 
they may contain some of the most interesting sample information.  They may 
also, however, be in error or result from circumstances different from those 
common to the remaining data.”  
 
This remark highlights an important issue for accounting researchers. Unusual data 

points may result either from erroneous data or from unusual events affecting a subset of the 

data. In the first case, unusual data points occur randomly in a dataset and are caused by 

measurement error such as coding errors or wrong data-collection procedures.2 If outliers 

                                                             
1 Throughout this study we refer to outliers, unusual, extreme, or influential observations alternatively; 
however, in Section 3 we provide criteria to identify the types of observations that may affect statistical 
inference.   
2 Kraft et al. (2006, p. 307) provide an example of a data error in CRSP: “…consider the case of Smith Corona, 
which filed for bankruptcy in 1996 and delisted in May of 1996 when the stock closed at $0.375. In February of 
1997, the firm emerged from bankruptcy, and as part of the reorganization, the common stock at the time of the 
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result from measurement error, researchers can correct, discard, or adjust them to fit between 

a lower and an upper bound. In the second case, unusual data points likely indicate areas 

where a certain theory is not valid or the presence of infrequent events that generate extreme 

outcomes. For instance, a company deciding to sell a business taking large restructuring and 

asset impairment charges would have unusually low total accruals, or an exploration 

company reporting a large unexpected oil discovery would have unusually large stock 

returns. 3  In the OLS framework, ignoring the underlying causes of these unusual 

observations is a form of model misspecification and a potential correlated omitted variables 

problem. This problem may cause wrong statistical inferences if the unusual events are 

correlated with both the dependent variable and the variable of interest. In this case, 

researchers should be very cautious in generalizing the results of their initial statistical 

analyses. Moreover, researchers should attempt to mitigate the effect of these outliers by 

modifying their model to include additional variables that capture the effect of unusual 

events, or by implementing econometric methods that are robust to the presence of outliers.  

Our literature review shows that the procedures used to identify and adjust for outlier 

observations are scattered and inconsistent throughout the accounting literature. In the large 

sample of archival studies we reviewed, most studies use linear regression but only 68 

percent mention that outliers are addressed. The most common solutions to address the 

presence of outliers are winsorization and truncation. We found that 55 percent of those 

                                                                                                                                                                                             
bankruptcy was canceled and shareholders of record received one warrant to purchase shares in the new 
company for every 20 shares previously held. The warrants had an estimated value of $0.10 or one half a cent 
per original share. When the new shares began trading in February 1997, CRSP used the new trading price of 
$3.12 as the firm’s delisting price. As a result, the calculated delisting return on CRSP is over 700%, when it 
actually should be closer to −100%. More importantly, using CRSP’s delisting return produces a BHAR of 
2,177% when it should be −135%.” 
3 Kraft et al. (2006, p. 333) provides examples of these two events, in 1996 Tyler Technologies Inc. had 
negative 72 percent total accruals, scaled by total assets; and in 1998 Triton Energy Ltd. had 203 percent buy 
and hold abnormal returns.   
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studies winsorize outliers, but only 33 percent winsorize both the dependent and independent 

variables; while 40 percent truncate outliers, but only 30 percent truncate both the dependent 

and independent variables. In addition, we found that 22 percent of studies addressing the 

problem of outliers applied a general winsorization or truncation cut-off for most variables 

and an ad-hoc cut-off for a subset of variables.   

Winsorizing or truncating data alters legitimately occurring extreme observations that 

can contain information that improves estimation efficiency. Furthermore, accounting 

academics have diverging opinions about the best way to deal with outliers in studies 

examining market efficiency (e.g., Kothari et al. 2005; Kraft et al. 2006; and Teoh and Zhang 

2011). In particular, these studies have highlighted potential problems resulting from deleting 

outliers based on extreme values of the dependent variable (referred to as ex-post truncation 

of stock returns). Despite these concerns, roughly half of the studies in our literature review 

winsorize or truncate stock returns used as dependent variable.  

Taken together, these issues motivate us to assess the effectiveness of various methods 

to address the problem of outliers. We use simulations to compare the incidence of Type I 

and Type II errors after winsorizing, truncating or using robust regression when the data has 

(1) no outliers, (2) random outliers, and (3) outliers resulting from unusual events that are 

correlated with both the dependent variable and the variable of interest. Winsorizing and 

truncating rely on modifying the properties of the data, while the various forms of robust 

regression rely on a transformation of the OLS framework to maximize the sum of weighted 

errors. Robust regression takes into account deviations from normality in the error terms in 

estimating the parameters of the OLS model, thus increasing the accuracy of the inference. 
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Recent research in statistics is advancing fast in this area and there are a number of new 

robust methods available to address the problem of outliers.  

We find that robust regression based on MM-estimation has the most desirable 

characteristics in treating outliers relative to other approaches found in the literature.  First, 

when outliers are uncorrelated with the independent variables, it yields parameter estimates 

that are unbiased and identical to those estimated under OLS.  Second, it is most effective at 

mitigating bias induced by a correlation between outliers and the independent variables. 

Third, MM-Estimation has 95 percent efficiency relative to OLS meaning that Type II errors 

are unlikely to be a consequence of the estimation procedure.   

In contrast to robust regression based on MM-estimation, alternatives commonly found 

in the accounting literature are much less effective and some methods actually induce bias.  

When outliers are random, winsorizing at the top and bottom 1 percent yields unbiased 

estimates, but winsorizing is ineffective at mitigating bias induced by outliers that are 

correlated with the variable of interest. In addition, the practice of winsorizing independent 

variables but not the dependent variable biases the coefficients away from zero. 

As reported in Kothari et al. (2005), simple truncation at the extremes generates a 

downward bias on coefficients. None of the other alternatives we evaluate generate a bias 

when outliers are randomly distributed.  When outliers are correlated with an independent 

variable, truncation exhibits less bias than winsorizing (or doing nothing) but not to the 

extent that robust regression does.   

In summary, our study provides guidance to accounting researchers considering 

alternative approaches to mitigating the influence of outliers. Robust regression based on 

MM-estimation yields estimates that are resistant to random outliers and significantly 
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reduces the bias created by outliers that are correlated with the independent variable of 

interest.  Furthermore, this procedure is highly efficient, exhibiting 95 percent efficiency 

relative to OLS, and not subject to biases induced by winsorization or truncation.   

 

II. Literature review 

2.1 Review of studies published between 2006 and 2010 

 We conducted a large literature review, including 857 studies published between 

2006 and 2010 in the following journals: Contemporary Accounting Research, Journal of 

Accounting Research, Journal of Accounting and Economics, Review of Accounting Studies, 

and The Accounting Review. The studies in our review span a variety of areas, such as 

auditing, properties of analysts’ forecasts, management compensation, earnings management, 

conservatism, tax, disclosure, and earnings-returns associations. As illustrated in Table 1, 

Panel A, 69 percent (590) of the studies are archival.  The remaining 31 percent are split 

between 12 percent (101) analytical, 12 percent (106) experimental, and 7 percent (60) 

discussion and review studies.4  

We searched the body, footnotes and tables of each archival study for any discussion of 

the treatment of influential observations or outliers. Surprisingly, only 68 percent of the 

archival studies (404 of 590) mention the presence of outliers in the data or describe any 

procedures to deal with influential observations.5 The most common solutions to address the 

presence of outliers are winsorization and truncation, 88 percent of studies use one of these 

procedures separately or combined. Table 1, Panel A, shows the breakdown of archival 

studies using winsorization, truncation and other procedures. 

                                                             
4 Studies that include both an analytical model and archival empirical tests are classified as archival. 
5 This percentage of studies not mentioning outliers ranges from 20% (RAST) to 37% (JAR and CAR). 
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Table 1, Panel B, shows the breakdown of studies that use winsorization to deal with 

outliers in continuous variables. Winsorization is the most common procedure used to deal 

with outliers, 55 percent of the studies dealing with outliers (221 of 404) winsorize at least 

one variable. This strategy modifies the original dataset, imposing and upper and lower 

bound on outliers by setting extreme data points to be equal to a specified percentile of the 

distribution of values for each variable, most studies in our sample use the top 99 and the 

bottom 1 percent. From the 221 studies that apply winsorization, 151 winsorize the 

dependent variable, 202 winsorize at least one dependent variable, and 132 winsorize a 

combination of dependent and independent variables. It is particularly concerning that we 

find that 29 studies use a general winsorization cut-off for most variables and an ad-hoc cut-

off for a subset of variables. Examples of these ad-hoc cut-offs are: setting extreme values of 

discretionary accruals as a percentage of total assets to be equal to plus and minus two, 

winsorize all variables except the logarithm of total assets, and setting extreme values of 

effective tax rate to be equal to one and minus one.     

 Table 1, Panel C, shows the breakdown of studies that use truncation to deal with 

outliers in continuous variables. Truncation is the second most common procedure used to 

deal with outliers, 40 percent of the studies dealing with outliers (161 of 404) truncate at least 

one variable. This procedure also imposes an upper and lower bound to the data, but it 

discards observations beyond the specified cut-offs. The cut-offs can be set based on 

percentiles, similar to winsorization, or based on the influence of each observation on the 

OLS fit, for example, eliminating observations with large residuals. The latter procedures 

rely on estimating a regression model and eliminating those observations with large 

residuals. From the 161 studies that truncate extreme observations, 143 truncate the 
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dependent variable, 139 truncate at least one dependent variable, and 121 truncate a 

combination of dependent and independent variables. In our sample, there are 59 studies that 

truncate observations based on a rule different than a percentile cut-off. For instance, truncate 

earnings scaled by total assets at plus and minus three, or truncate firms with stock prices less 

than five.  

We find that the 13 percent of studies that do not use winsorization or truncating 

employ diverse procedures, including: rank dependent and/or independent variables, 

transform variables using logarithms, and use various forms of robust regression (e.g., 

median regression, least trimmed squares, and MM-estimation).  

Overall, we find that the procedures used to identify and adjust for outlier observations 

are scattered and inconsistent throughout the accounting literature. Between the studies that 

use winsorization and truncation, we identified 88 studies that use an ad-hoc rule for a subset 

of variables. Furthermore, we identified 38 studies in our sample of archival studies in which 

the procedures employed were unclear. For example, some studies note that they use the 

procedures from Belsley et al. (1980) but they do not describe exactly how were they 

performed; or other studies note that they use standardized residuals or Cook’s D to truncate 

observations with large residuals, but do not include the cut-offs employed. Such 

inconsistencies make it nearly impossible to replicate these studies.  

Finally, we note that our classification of studies in separate categories is subject to 

some limitations, given that (1) the procedures used to deal with outliers are not mutually 

exclusive, (2) some studies have dichotomous dependent variables, (3) most studies have 

more than one regression model. Nevertheless, we believe that our review shows that there is 

need for greater consistency in the treatment for outliers in accounting research studies.  
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2.2 Outliers and skeweness of stock returns 

The capital markets literature has examined the distributional properties of accounting 

and stock returns data and the impact of those properties on the OLS assumptions.6 The 

proper treatment of outliers has become a source of debate in several papers examining 

market efficiency. A controversial issue is the presence of extreme positive stock returns and 

the use of returns as dependent variable.  

A study by Kraft et al. (2005) examines the association between stock returns and 

accruals and show that a previously documented association in the accrual anomaly literature 

is influenced by a small number of extreme observations. This study argues that the decision 

to truncate outliers should depend on the purpose of the analysis. On one side, if researchers 

aim to test a general theory, their statistical model should fit the bulk of the data, instead of 

reflecting the effect of relatively few extreme observations. On the other side, if the purpose 

of the analysis is to evaluate the profitability of a trading strategy and predict future returns, 

then the only reason to truncate extreme observations is the possibility of data errors.7  

In contrast, other studies caution against the truncation of stock returns. Core (2006, 

p. 350) concludes that, “in general, deleting based on the robust regression techniques 

                                                             
6 These assumptions include: (1) the dependent variable can be calculated as a linear function of a specific set of 
independent variables, plus a disturbance term; (2) the expected value of the disturbance term is zero; (3) the 
disturbance terms all have the same variance and are not correlated with one another; (4) the observations on the 
independent variables can be considered fixed in repeated samples; and, (5) the number of observations is 
greater than the number of independent variables, and there is no exact linear relationship between the 
independent variables.   
7 Errors in returns are rare but they are present in the data as noted previously in footnote 4. In addition, Kraft et 
al. (2006, p. 307) highlight that if an error impacts delisting returns and “researchers suspect that the frequency 
of delisting is correlated with their partitioning variable (e.g., accruals/ performance) then it will be worthwhile 
to report the sensitivity of reported results to extreme performing firms.  If the results are robust then it is simple 
to rule out data errors as the source of the significant results. On the other hand, if the results change, the 
researcher can investigate the affected observations to verify whether there are errors in the returns calculation.  
Any errors can then either be corrected or deleted and the analysis re-estimated.” 
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employed and advocated by KLW seems inappropriate… deleting extreme observations from 

skewed return data leads to biased estimates and can bias inferences.” Using simulations, 

Kothari et al. (2005) show that data truncation can induce a spurious negative relation 

between future returns and ex-ante information variables (e.g., analyst forecasts and 

abnormal accruals). The results of this study suggest that a combination of right skewness of 

stock returns and truncation based on large realizations of stock returns may bias the 

inferences of capital market studies using actual data. Finally, Teoh and Zhang (2011) argue 

that the results of Kraft et al. (2006) are attributable to non-random deletion of firms with 

unusually high stock returns, and also document that the association between accruals and 

stock returns is robust to excluding outliers for a sub-sample excluding loss firms.8  

These seemingly conflicting views have led researchers in a variety of directions. In 

our literature review we identified 157 studies that use stock returns as a dependent variable 

at least in one regression model. From these studies, 53 percent (83) winsorize or truncate 

extreme stock returns, while the remainder 47 percent (74) use the raw data. This study 

proposes an alternative technique to address the problem of extreme returns without 

eliminating these observations.  

 

III. Outliers, influential observations and OLS estimation 

Most archival studies in accounting research aim to test a hypothesis about the 

relation between one or many causal or independent variables x, and an outcome or 

                                                             
8 In contrast to these papers, arguing against the truncation of skewed stock returns, several studies in the 
analyst forecast error literature truncate large forecast errors. The distribution of forecast errors has large 
negative errors and is left skewed. Abarbanell and Lehavy (2003, p. 114) highlight this issue "many studies 
implicitly limit observations in their samples to those that are less extreme by choosing ostensibly symmetric 
rules for eliminating them, such as winterization or truncations of values greater than a given absolute 
magnitude", and argue that "such rules inherently mitigate the statistical impact of the tail asymmetry and 
arbitrarily transform the distribution, frequently without a theoretical or institutional reason for doing so." 
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dependent variable y.9 For instance researchers are interested in the impact of individual firm 

characteristics such as disclosure quality, size, profitability, and leverage on dependent 

variables such as stock returns, discretionary accruals, analysts’ forecast errors, management 

compensation, and audit fees.10  The linear regression or OLS framework is the most widely 

used quantitative tool to assess the association between variables in accounting research 

studies. In a simple OLS regression: 

𝑦 = 𝛼 + 𝛽𝑥 + 𝜖         (1) 

and the expected value of y given x is: 

𝐸 𝑦 𝑥 = 𝛼 + 𝛽𝑥             (2) 

Since the parameter estimates are estimated by minimizing the sum of squared errors, 

𝛽 is the mean effect of x on y and not necessarily the “typical” effect.  Given that OLS 

parameters are based on the conditional mean of the dependent variable, they suffer from the 

same problems from the mean itself and are altered by extreme observations.  

In order to address the effect of extreme observations in the estimated parameters of 

an OLS model, researchers should consider what causes extreme values of x and y. The 

distribution of the values of y will depend on the researchers’ sample selection procedure, the 

distribution of the x variables, and additional unknown sources of variation, represented by 

an error term. Extreme values of y can be caused by a number of reasons, including: (1) 

extreme values of the hypothesized x variables that influence y; (2) nonlinearities in the 

                                                             
9 Ball and Foster (1982, p. 165) write: “Because the laboratory environment is unavailable, the solution cannot 
be to “purify” the data from a theoretical perspective. The researcher must attempt to reduce the level of 
anomaly implied by the imperfect construct-data correspondence, but also will have to decide how much 
anomaly is tolerable.” 
10 A problem in determining causal relationships in accounting research is the lack of experimental data. As 
highlighted by Cook and Cambell (1979, p. 37): “Accounting for the third-variable alternative interpretations of 
presumed (causal) relationships is the essence of internal validity. ” Furthermore (1979, p. 56), “with quasi-
experimental groups, the situation is quite different.  Instead of relying on randomization to rule out most 
internal validity threads, the investigator has to make all the threats explicit and then rule them out one by one.”  
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relation between x and y; or (3) additional x variables, unknown to the researcher or omitted 

from the model, that also influence y. It turns out that not all extreme observations have the 

same effect on the estimated parameters of an OLS model. It is important to differentiate four 

different concepts, univariate outlier, regression or multivariate outlier, leverage points, and 

influential observations.  

 

3.1 Univariate and regression outliers  

In general, a univariate outlier is an observation that stands away from the rest of the 

distribution of a particular variable. This is the type of outlier addressed by winsorization or 

truncation methods. Nevertheless, even when it is informative to detect these cases, because 

extreme observations in either x or y can mask the underlying relation between x and y, they 

are not necessarily problematic for estimating the OLS parameters. In contrast, a regression 

outlier (also called multivariate) is an observation that stands apart from the bulk of the data, 

considering the x and y variables simultaneously. A regression outlier is also referred to as a 

vertical outlier when it is within the normal range for x but it has an unusually high or low 

value of y.  

Consider the examples in Figure 1a and 1b. Figure 1a plots a number of data points 

(x,y) and a fitted regression line, which has a positive slope, suggesting that y is increasing in 

x. Suppose, however, that the y observation is either miscoded or is heavily influenced by 

another variable not included in the model, but the x observation for that data point is within 

the “usual” range compared to other data points. Figure 1b, shows that the outlier will “pull” 

the regression line down affecting the slope. Various types of outliers have different 
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implications for other parameters of interest besides the slope coefficients. In particular, the 

presence of vertical outliers biases the intercept and inflates the standard errors.  

 

3.2 Leverage points and influential observations 

Leverage points relate to extreme values of the x variables that may influence the 

slope of the regression line. The influence of a leverage point depends of its position 

compared to the rest of the data. We show the effect of leverage points using two different 

examples. First in Figure 1c, a data point is distant from the other observations but it lies 

within or very close to the fitted line. This is considered a “good” leverage point in the sense 

that improves the overall fit of the model.  In contrast, in Figure 1d, a data point is out of the 

“usual” x and y range compared to other observations and it is away from the fitted 

regression line. This is considered a “bad” leverage point, influencing the slope of the 

regression line.  The low value of y combined with high value of x pull the regression line 

down. This type of “bad” leverage point is considered an influential observation, if excluded 

from the analysis, it would change the regression estimates substantially. In general, the 

observations that have the most influence on all the regression parameters are those that (1) 

stand apart from the bulk of the data, and (2) have high leverage (unusual x values).11   

 

3.3 Outliers as a correlated omitted variable problem  

As previously discussed, potential outliers in either the dependent or independent 

variables can be the result of errors or by other problems. Outliers in the dependent variable 

                                                             
11 An alternative way to characterize the different types of outliers and their implications is as follows: (1) 
vertical outliers have usual x values but unusual y values, influencing the intercept and inflating the standard 
errors; (2) good leverage points have unusual x and y values, but are on the regression line, improving the 
estimation by reducing the standard errors; and, (3) bad leverage points have unusual x and y values, generally 
away from the bulk of the data, influencing the intercept and slope coefficients and inflating the standard errors.  
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can arise from skewness in the independent variables or from differences in the data 

generating process for a small subset of the sample.  

As suggested in the previous Section, extreme values of the dependent variable 

caused by skewness in the independent variable, called good leverage points, are not 

necessarily problematic because extreme values of y are generated by large values of x.  

Nevertheless, potential inference problems are caused by extreme values of y not explained 

by x. These are cases may have a different data generating process, for example resulting 

from an unknown or omitted variable that frequently takes on a value of zero, but 

occasionally takes on a different value and has a major impact on y.  

In the context of accruals, for example, INSMED, Inc., a medical technology 

company, had total accruals scaled by total assets of 206 percent because it reported a gain of 

$123 million on the sale of technology to Merck. The company had total assets of only $4 

million at the start of the year. Such infrequent yet significant events also occur in the context 

of stock returns. For example, OSICOM Technologies earned buy-and-hold abnormal returns 

of 459% between 6/1/1995 and 5/31/96. A significant amount of the returns is attributable to 

agreements it announced during the year.  On May 31, 1996, it issued a press release that it 

became the sole supplier of video equipment for GTE on a $259 million army contract.  

OSICOM had BHAR of 46 percent in two days (May 30 and May 31).  

Depending on their magnitude, ignoring these low frequency but extreme events will 

generate large standard errors and bias the coefficient estimates. To the extent that these 

high-impact events are correlated with the independent variables of interest, they lead to the 

standard correlated omitted variables problem. Holding the dollar value of any event 

constant, the impact of the event is likely to appear much more significant for smaller firms.  
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For example, the $123 million dollar gain reported by INSMED, Inc., had a dramatic impact 

on accruals (206 percent), but had Merck reported the same gain, accruals would have 

increased by only 2 percent.  Consequently, these infrequent events are likely to be related to 

the many variables in accounting research that are correlated with size.12 

To illustrate the potential correlation between infrequent events and accounting 

variables using real data, we report the relation between total accruals and total assets in 

Figure 2.  Using Compustat data between 1972-2001 for all firms with stock prices in excess 

of $5, we construct 50 bins based on total assets and report box plots of accruals for each bin.  

Not surprisingly, extreme accruals occur more frequently in smaller firms. 

The challenge for accounting researchers is to retain extreme values of y that are 

“caused” by the independent variables of interest while, at the same time, limiting the 

influence of extreme values of y caused by infrequently occurring events that are not 

included in the model. In the following Section, we discuss robust regression techniques that 

are intended to do precisely this.  

 

IV. Robust regression  

4.1 Definition of robust estimator and properties of robust estimators 

 The term robust has many different connotations in the statistics literature. For 

example, the term robust standard error refers to a modification of the standard errors to 

account for heteroscedasticity or error dependence. For the purposes of this paper, we will 

refer to robust estimators, and particularly to robust regression, as a class of estimators that 

satisfy two conditions: “(1) if a small change is made to the data, it will not cause a 

substantial change in the estimate, and (2) the estimate is highly efficient under a wide range 
                                                             
12 See Appendix A for additional examples of extreme outcomes for stock returns and accruals. 
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of circumstances” (Andersen 2008, p. 3). The first condition for a robust estimator is its 

resistance to the presence of unusual observations. A resistant estimator provides a valid 

estimate for the bulk of the data. The second condition for a robust estimator is its efficiency. 

An efficient estimator has high precision even when the distributional assumptions necessary 

for the estimator are not strictly met. Finally, an estimator is efficient if its variance is small, 

resulting in small standard errors.  

 The literature on robust estimators has focused on two additional properties: 

breakdown point and bounded influence. The breakdown point is an overall measure of the 

resistance of an estimator. It is the smallest fraction of the data that a given estimator can 

tolerate without producing an inaccurate result. When an estimator “breaks down” it fails to 

represent the pattern in the bulk of the data. The bounded influence property refers to the 

influence of each individual observation yi on the properties of a given estimator. Or, in other 

words, the marginal change in an estimate by the inclusion of the additional observation yi. 

 

4.2 Why OLS is not robust under certain conditions  

 The OLS method to estimate the regression parameters is not robust because its 

objective function, based on the minimization of the sum of squares of the residuals, 

increases indefinitely with the size of the residuals. By considering the sum of the square 

residuals, OLS gives excessive importance to observations with very large residuals. In terms 

of the definitions above, OLS has unbounded influence. Moreover, even a single outlier can 

have a significant impact on the fit of the regression surface and the breakdown point of OLS 

is zero.  

Outliers can also be associated with non-constant error variance, violating one of the 
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assumptions of the OLS model and causing the OLS estimates to lose efficiency because they 

give equal weight to all observations. OLS weights outliers equally, even when the outliers 

contain less information about the true relation between x and y.  

 

4.3 Types of robust regression estimators 

 The various types of robust regression estimate the parameters of a linear regression 

model while dealing with deviations from the OLS assumptions. There are a number of 

robust regression techniques, including: L-estimators (Least Absolute Values LAV, Lest 

Median Squares LMS, and Least Trimmed Squares LTS), R-estimators, S-estimators, M-

estimators, GM-estimators, and MM-estimators.13  

 In general, the L-estimators rely on minimizing a modified version of the sum of 

square residuals criteria, such as the sum of the absolute values of the residuals (LAV), the 

median of the squares residuals (LMS), and the sum of truncated or trimmed squares 

residuals after estimating the regular OLS regression (LTS). Although these methods are 

relatively easy to compute and have bounded influence, they are generally inefficient, 

performing badly in small samples. Similarly, the R-estimators rely on minimizing the sum 

of a score of the ranked residuals, but most R-estimators have low breakdown points.  

 The S-estimators take a different perspective, focusing on the minimum variance 

property of the OLS estimators. The S-estimators minimize a measure of the dispersion of 

the residuals that is less sensitive to outliers than the OLS variance; however, these 

estimators also have very low efficiency compared to OLS.  
                                                             
13 LTS estimation was proposed by Rousseeuw (1984); M-estimation was proposed by Huber (1964, 1973); S-
estimation was proposed by Rousseeuw and Yohai (1984); and, MM-estimation was proposed by Yohai (1987). 
The discussion in this section is based on the reviews of robust methods in Andersen (2008); Maronna, Martin 
and Yohai (2006); and, Fox and Weisberg (2010). Additional guidance on the estimation of robust methods is 
available in Chen (2002), and Verardi and Croux (2009).  
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 The M-estimators, GM-estimators and MM-estimators are based on minimizing a 

function of the residuals. This class of estimators minimizes the sum of a function wi of the 

scaled residuals (scaling residuals by an estimate of their standard deviation) using weighted 

least squares. The weight function wi is non-decreasing for positive values and less 

increasing than the square function, thus errors that are far from zero receive progressively 

less weight than errors that are closer to zero. The most commonly used weight functions are 

the Huber and bisquare functions. The final weights are informative and can be used to 

identify which observations are outliers. The general criteria to be minimized is as follows: 

𝑤!
!!
!!

𝑥! = 0!
!!!                                                 (3) 

The OLS can be considered a special case within this class of estimators, where the square 

function is used to weight the residuals. The MM-estimators are widely used and combine a 

high breakdown point with high efficiency (95 compared to OLS). These estimators are 

computed using an iterative procedure, because the residuals cannot be found until the model 

is fitted, and the parameter estimates cannot be found without the residuals. The estimator 

procedure follows these steps: (1) first pass coefficients are calculated using some form of 

resistant regression (usually the S-estimator with Huber or bisquare weights); (2) the first 

pass coefficients are used to estimate residuals and the scale parameter; (3) a weight function 

is applied to the scaled residuals; (4) a second pass estimate of coefficients is obtained using 

weighted least squares; and, (5) the new coefficients are used for a new iteration (keeping 

constant the measure of the scale of the residuals). The solution is considered to have 

converged when the change in estimates is no more than 0.1 percent from the previous 
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iterations. 14 

 

V. Simulations 

As discussed in Section 3.3, extreme values of y from infrequent but extreme events, 

possibly arising from a data-generating process that is different from the bulk of the sample, 

can bias coefficient estimates if these events are correlated with x.  In this section we conduct 

simulations to evaluate the relative effectiveness of methods commonly used in accounting 

research, “do nothing”, winsorization, and truncation, and compare them to robust regression 

based on MM-estimation at mitigating the impact of outliers.  

For our simulations, we construct a data generating process consisting of a primary 

variable of interest x, and a variable z, that is zero for most of the sample.  The variable z can 

be thought of as an infrequent event that generates extreme values of y whenever it occurs.  

To illustrate the potential impact of these infrequent events, z can occur only for high values 

of x, which induces a correlated omitted variables problem if z is ignored and extreme values 

of y (caused by z) are not dealt with properly.  Equation (4) describes the generating process 

for y:  

𝑌 = 𝛼 + 𝛽𝑥 + 𝛾𝑧 + 𝑒       (4) 

where 

𝑥~𝑁 0,1 ,  
𝑧 = 𝑑 ∗ 𝑣,  
𝑑 = 1    if x is in the top decile of its distribution and a random draw from a uniform 
distribution exceeds 0.8, 
𝑣~𝑁 3,1 ,   

                                                             
14 We identified a small number of paper that use various forms of robust regression, for example: Abbody et al. 
(2010), Bell et al. (2008), Chen et al. (2008), Choi et al. (2009), Dyreng and Bradley (2009), Kimbrough 
(2007); and, Ortiz-Molina (2007). Appendix B shows excerpts from these studies were robust regression 
procedures are mentioned. Unfortunately, we note that in most cases these procedures are just mentioned in a 
footnote and there is insufficient information to replicate them independently. 
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𝑒~𝑁(0,1). 
 

By construction, z will be zero approximately 98 percent of the time. For our primary 

analysis, we generate 250 samples of 2,000 observations. For simplicity, we set α = 0, β = 

0.8 or zero, and γ = 1 or zero. We set β = 0 (γ = 0) when we test for potential Type I (Type II) 

errors. For each sample we generate, we estimate regressions employing the following 

alternative approaches: 

1. Do nothing. As described in our literature review of recent accounting research, 

approximately a third of published archival papers do not report addressing the 

existence of outliers in the data; 

2. Winsorize y and x at the extreme 1 percent of the distributions; 15  

3. Winsorize x but leave y as is; 

4. Truncate y and x at the extreme 1 percent of the distributions; 

5. Truncate x but leave y as is; and, 

6. Leave x and y variables as they are, but use robust regression based on MM-

estimation. 

 

5.1 Graphical illustrations of alternative identification and treatment of outliers. 

Before reporting our main simulation results, we construct a sample of 4,000 

observations and generate scatter plots to illustrate the impact of alternative approaches to 

treat outliers.  Figure 3a is a scatterplot of 4,000 observations where y is generated from the 

following process: 

𝑦! = 0.8𝑥! + 𝑧! + 𝑒!        (5) 

                                                             
15 We assume that z is not observed by the researcher and, therefore, leave the generated value as is. 
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Since z is correlated with x and y, outliers will bias the coefficient on x if left 

untreated. The circles in Figure 3a represent observations where z is nonzero. As expected 

from the construction of y, these “shocks” occur for roughly 2 percent of the sample and only 

when x is extreme. These observations will obviously induce an upward bias on the β 

coefficient.  The estimated coefficient from this sample (represented by the black line) is 

0.89. 

Figure 4a, reports the same data used for Figure 3 but overlays lines representing 

cutoffs for the top and bottom 1 percent of x and y.  As the plot suggests, winsorizing or 

truncating will reduce the influence of z to a small degree but it will also reduce the influence 

of good leverage points. Figure 4b is a scatterplot of the sample after winsorizing x and y.  

This plot illustrates that winsorizing does little to reduce the impact of z on y because, 

although magnitudes of the y’s are reduced, they are still retained and are still large relative 

to the rest of the sample. Estimation of equation (5) with the winsorized data yields a slope 

coefficient of 0.87, reducing the bias caused by z by only 0.02. 

Figure 4c is a scatterplot of the data after winsorizing x but not y. As reported in 

Table 1 this is a fairly common practice in accounting research, particularly when the 

dependent variable is returns. This approach generally makes problems worse than doing 

nothing at all as it can bias the coefficient away from zero.  For example, assume that for a 

given observation, e = 0, x = 5, z = 0, and y = 4 (0.8*x).  For example, if x is winsorized to 2, 

an artificial error of 2.4 (4 - 0.8*2) will bias the regression line upwards. The estimated slope 

coefficient after winsorizing x only is 0.91 compared to 0.89 when nothing winsorized and 

0.8, the true value of the β coefficient.  
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Figure 5a depicts a scatterplot after truncating extreme values of x and y (top and 

bottom 1 percent).  Truncation leads to a parameter estimate of roughly 0.77, which suggests 

some downward bias.  Figure 4b illustrates a scatterplot after truncating only extreme values 

of x. As suggested by the plot, truncating only the independent variable does not reduce the 

bias caused by z. As illustrated by the circles, many of the extreme values of y caused by z 

still remain in the sample. 

Figure 6 is a scatterplot to illustrate observations considered to be outliers, which will 

be down-weighted significantly using robust regression based on MM-estimation.  The 

diamonds represent data points with extreme values of y caused by z and considered outliers.  

The circles symbolize data points considered outliers but that are not influenced by z (when z 

is zero).  The triangles are data points with extreme values of y that are influenced by z 

(when z is not zero) but are not considered outliers. The advantage of this robust estimation 

procedure is that good leverage points are retained. That is, extreme values of y caused by 

extreme values of x are retained which increases efficiency relative to a simple truncation 

rule. Consequently, robust estimation has the advantages of being both consistent and 

efficient relative to winsorizing and truncating. 

 

5.2 Simulation Results 

Base simulation results are reported in Table 2, Panel A. In this panel, the outliers 

generated by an infrequent event are randomly distributed and independent of x. We generate 

values of y as described in Equation (4) except that instead of extreme events z occurring 

only when x is in the top decile, z occurs with equal probability (2 percent) across the x 

distribution. Values of y are generated with β and γ being set to 0.8 or zero, and 1.0 or zero, 
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respectively. In the first four regressions, z is omitted from the regression estimation to 

simulate a typical case where an infrequent event is omitted from the regression.   

The second four regressions are estimated with z included in the regression, which is 

the ideal solution if the research could identify these cases. The table reports mean estimates 

of β for 250 samples of 2,000 observations, with various treatments for outliers. Bias is the 

difference between the “true” parameter value and the mean estimate of β. Significance 

levels for bias are also reported in the table (p < 0.01***, p < 0.05**, and p < 0.1=*).  Since 

standard errors are very small, small magnitudes of bias will be significant.   

The benchmark case is “do nothing”, where OLS is estimated without trimming, 

winsorizing or down-weighting outliers. Not surprisingly, since the outliers are randomly 

distributed, estimates of β are unbiased in all cases. Results are virtually identical when x and 

y are winsorized at the top and bottom 1 percent. As reported in Kothari et al. (2005), 

truncating y and x imparts a downward bias on bias but only when there is a correlation 

between x and y.  If y is generated when β= 0, truncation does not impact β (bias it to a value 

below zero).16 The intuition for this is that truncated outliers are not outliers generated by 

extreme values of x (since x is uncorrelated with y), which means no good leverage points 

that might induce a relation between x and y are lost.   

In contrast, when x is correlated with y (β = 0.8 in the y generating process), the 

coefficient is biased down as expected. β is downward biased by amounts ranging from 0.03 

to 0.06, depending on the specification. Although this will not likely impact significance 

levels in our simulations since β is set to 0.8, truncation can generate Type I or Type II errors 
                                                             
16 See Appendix C for an analytical representation of bias caused in parameter estimates as a result of 
truncation. 
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if the true value of β is closer to zero.  These findings suggest truncation of outliers should be 

avoided in favor of other alternatives. 

As with winsorizing and our base case, robust regression results reveal unbiased 

estimates for all specifications. There is no evidence that robust regression biases coefficients 

when outliers are randomly occurring. In contrast to Panel A, Panel B reports results for the 

case when the infrequent events z, are correlated with x. Such events can only occur when x 

is in the top decile of its distribution. As an example, x might be negatively correlated with 

size and z tends to occur only for small firms. These non-random outliers are a concern for 

researchers attempting to draw inferences about how x influences y.   

As in Panel A, z is omitted from the regressions in the first two rows of Panel B and 

serve as benchmarks for rows three and four, where γ = 1.0. As expected, when γ = 0, β 

estimates are about 0.8 (unbiased) across the board except for the case of truncation, where, 

again, there is a downward bias in the parameter estimate. In contrast, when γ = 1.0, we have 

a classic correlated omitted variables problem that will bias estimates of β if these outliers 

are ignored.  When outliers are untreated (Do nothing case), β is biased upwards by 0.10 and, 

as row four shows generates a Type I error. Even though x is uncorrelated with y by 

construction (β= 0), the mean coefficient estimate is 0.10. Column (2) shows that winsorizing 

at 1 coefficient does virtually nothing to reduce the influence of the correlated outliers z.  The 

coefficient is 0.09 and almost identical to the do nothing case. In Column 4, truncation 

appears to mitigate the bias but this is largely an artifact of a tendency for truncation to bias 

parameter estimates down. 
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Column 4 of Panel B reports the robust regression results, which show an 80 percent 

reduction in the bias caused by the outliers (0.10 versus 0.02). The bias is not completely 

eliminated but the impact is reduced substantially.  In untabulated results, the bias created by 

the outliers is significantly different from zero in only 6 percent of the 250 samples (p < 

0.01) compared to 90 percent of the time when outliers are winsorized. Overall, the 

simulation results in Table 2 show that robust regression is unaffected by random outliers and 

significantly reduce bias caused by extreme events that are correlated with a researchers 

variable of interest. Winsorizing does little to mitigate the influence of correlated outliers and 

truncation imparts a downward bias on parameter estimates. 

 

5.3 Trimming the independent variable but not the dependent variable.  

As our literature review suggests, it is a surprisingly common practice for researchers 

to either winsorize or truncate the independent variable but leave the dependent variable as it 

is.  As illustrated by example and in Figures 3c and 4a this practice is likely to bias 

coefficients away from zero. In Table 3 we winsorize or truncate only the independent 

variable x and the base case is reported for comparison purposes. In Panel A, extreme events 

are randomly distributed and uncorrelated with x. 

As Panel A shows, winsorizing x but not y imparts an upward bias on β, increasing it 

from 0.80 to 0.82.  As discussed earlier, winsorizing only x “leverages” up the impact of x on 

y. In contrast, truncation of only the x variable appears to eliminate the downward bias 

caused by truncation of both x and y reported in Table 2. However, as reported in Table 3, 

Panel B, truncating only x does nothing to mitigate the bias caused by correlated outliers.  
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Panel B also reinforces the upward bias caused by winsorizing only the independent variable.  

In summary, based on evidence reported in Table 3, trimming the independent variables but 

not the dependent variable is not advisable. 

VI. Conclusion 

In this study we review the accounting literature and quantify the various methods used 

to mitigate the impact of influential observations and find significant variation. The most 

common solutions to address the presence of outliers are winsorization or truncation but even 

within these approaches implementation varies. For example, some studies trim (winsorize or 

truncate) the independent variables but not the dependent variables.  Moreover, some studies 

winsorize only a subset of all variables. Almost a third of all studies do not report a treatment 

of any kind. This wide variation in the treatment of outliers makes comparability across 

studies and assessment of causality problematic. 

The purpose of this study is to evaluate alternative approaches currently in the 

accounting literature and compare them to more formal treatment of outliers through robust 

regression procedures. We evaluate these approaches in cases where outliers occur randomly 

as well as cases where outliers are correlated with the independent variable of interest.  The 

causes of outliers in the context of accounting information and stock returns do not appear to 

be random.  For example, extreme events that generate extreme outcomes likely occur more 

frequently in smaller firms.   Therefore, we are interested in how various procedures mitigate 

the impact of infrequent but correlated events (outliers).   

We find that winsorizing does little to mitigate the influence of correlated outliers and 

winsorizing only the independent variable biases the coefficients away from zero, increasing 

the probability of a Type I error.  In contrast, consistent with Kothari, et al. (2006), truncation 
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tends to bias coefficients down, unless the independent variable is uncorrelated with the 

dependent variable (i.e. the “true” parameter is zero).  We compare these approaches to a 

robust estimation procedure based on MM-estimation that is both consistent and highly 

efficient even in the presence of outliers. Robust regression substantially reduces bias 

induced by correlated outliers (80 percent reduction in bias). Based on our findings, 

accounting researchers should strongly consider the use of robust regression procedures as a 

standard practice and alternative to winsorization and truncation. 
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Figure 1a- Normally distributed data 

 

 

Figure 1b- Vertical outlier 
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Figure 1c – Good Leverage Point 

 

 

Figure 1d – Bad leverage point 
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Figure 2 – Accrual outliers and Firm Size. 

 

 

 

Figure 2 is a box plot of accruals for total assets grouped into fifty bins.  Accruals and assets 
data are obtained from Compustat and include and include all firms with sufficient data to 
compute total accruals (balance sheet) between 1972-2001. 
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Figure 3- Scatterplot of (x,y) data points in a simulated dataset and a fitted OLS 
regression line. The estimated slope coefficient is 0.894 
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Figure 4a – Scatterplot with lines representing top and bottom 1 percent of x and y 
distributions.  
 

 
 
 

 

 

 

 

 

 

 

 

 



 35 

Figure 4b - Scatterplot of (x,y) data points in a simulated dataset and a fitted OLS 
regression line after winsorizing x and y at the top and bottom 1 percent. The estimated 
slope coefficient is 0.87.  
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Figure 4c - Scatterplot of (x,y) data points in a simulated dataset and a fitted OLS 
regression line after winsorizing only x at the top and bottom 1 percent. The estimated 
slope coefficient is 0.91.  
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Figure 5a - Scatterplot of (x,y) data points in a simulated dataset and a fitted OLS 
regression line after truncating x and y at the top and bottom 1 percent. The estimated 
slope coefficient is 0.80. 
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Figure 5b - Scatterplot of (x,y) data points in a simulated dataset and a fitted OLS 
regression line after truncating only x at the top and bottom 1 percent. The estimated 
slope coefficient is .80. 
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Figure 6 - Scatterplot of (x,y) data points in a simulated dataset and a fitted robust 
regression line based on MM-estimation. The estimated slope coefficient is 0.82. 
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Table 1 –Literature Review 
Panel A –Breakdown of studies by general category 
 
  Number of studies Percentage of total 
Archival 590   69%   
Analytical 101 

 
12%   

Experimental 106 
 

12%   
Discussion and reviews 60   7%   
Total number of studies    857   100% 

     Archival studies addressing outliers 404   68%   
Archival studies do not addressing outliers 186   32%   
Total archival studies   590   100% 

     Archival studies using winsorization 221   55%   
Archival studies using truncation 161 

 
40%   

Archival studies using both winsorization and 
truncation 27   7%   
  

 
355 

 
88% 

Archival studies using other techniques 
 

49 
 

12% 
Total archival studies addressing outliers   404   100% 

     Archival studies with returns as dependent variable 157   27%   
Archival studies with other dependent variables 433   73%   
Total archival studies   590   100% 

     Returns winsorized as dependent variable 45   29%   
Returns truncated as dependent variable 43 

 
27%   

Returns winsorized and truncated as dependent variable 5   3%   
  

 
83 

 
53% 

Returns used raw as dependent variable 
 

74 
 

47% 
Total archival studies with returns as dependent variable 157   100% 
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Panel B –Breakdown of studies using winsorization 
 

  Number of studies Percentage of total 
Independent variables 202   91%   
Dependent variables 151 

 
68%   

Both independent and dependent variables 132   60%   
Archival studies using winsorization   221   100% 
          

 
Panel C –Breakdown of studies using truncation 

 
  Number of studies Percentage of total 
Independent variables 139   86%   
Dependent variables 143 

 
89%   

Both independent and dependent variables 121   75%   
Archival studies using truncation   161   100% 
          

 
This table presents the result of our literature review. We reviewed all studies published between 2006 and 
2010 in the following journals: Contemporary Accounting Research, Journal of Accounting Research, 
Journal of Accounting and Economics, Review of Accounting Studies, and The Accounting Review. We 
searched the body, footnotes and tables of each archival study for any discussion of the treatment of 
influential observations or outliers. The studies in our review span a variety of areas, such as auditing, 
properties of analysts’ forecasts, management compensation, earnings management, conservatism, tax, 
disclosure, and earnings-returns associations. Studies that include both an analytical model and archival 
empirical tests are classified as archival. 
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Panel B – Infrequent events (z) are correlated with x 

 
Parameter 

Values Do Nothing Winsorize Truncate 
Robust  

Regression 

Regression 𝛽 𝛾 𝛽 Bias  𝛽 Bias  𝛽 Bias  𝛽 Bias  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 0 0.80 0.00  0.79 -0.01 * 0.74 -0.06 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 1 0.90 0.10 *** 0.89 0.09 *** 0.81 0.01 *** 0.82 0.02 *** 

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 1 0.10 0.10 *** 0.09 0.09 *** 0.04 0.04 *** 0.02 0.02 *** 

                

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 0 0.80 0.00  0.79 -0.01 * 0.74 -0.06 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 1 0.80 0.00  0.80 0.00  0.77 -0.03 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 1 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

 
This table reports simulation results constructed as follows. The independent variable x, is generated from a normal distribution 
with mean zero and standard deviation of one. An “extreme event” variable v, is generated from a normal distribution with a 
mean of three and standard deviation one. For Panel A, v is multiplied by a the variable d, which is one when a random draw 
from a uniform distribution has a valued equal to or exceeding 0.98, which means z= d*v, is non-zero roughly 2 percent of the 
time. For Panel B, a relation between x and z is induced differently. The variable d is assigned a value of zero whenever the 
corresponding x falls below the top decile of its distribution. If x is in the top decile of its distribution, d is assigned a value of 
one whenever a random draw from a uniform distribution exceeds 0.8. This implies that, again, z= d*v is non-zero roughly 2 
percent of the time but is correlated with x. The dependent variable y, is generated by applying the following data generating 
process: 
 
𝑌 = 𝛼 + 𝛽𝑥 + 𝛾𝑧 + 𝑒, 
 
where e is drawn from a standard normal distribution. In all cases, a is set to zero. Four y variables are generated by varying 
values of b (zero or 0.8) and g (zero or 1.0).  A total of 250 samples are generated where n= 2,000.  For each sample, x and y 
variables are winsorized or truncated at the top and bottom 1 percent of the sample for results reported in “Winsorize” and 
“Truncate,” Columns. Reported estimates of b are means from the estimation of 250 regressions under each condition. Bias is 
the difference between the mean and “true” parameter value (zero or 0.8). Reported significance levels are compute from t-
statistics.  All regressions are estimated using OLS, except for robust regression results based on MM-estimation. ***, **, * 
symbolize significance at p < 0.01, p < 0.05 and p < 0.10. 

 

Table 2 –Main Simulation Results 
 

Panel A – Infrequent events (z) are independent of x 

 
Parameter 

Values Do Nothing Winsorize Truncate 
Robust  

Regression 

Regression 𝛽 𝛾 𝛽 Bias  𝛽 Bias  𝛽 Bias  𝛽 Bias  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 0 0.80 0.00  0.80 0.00  0.75 -0.06 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 1 0.80 0.00  0.80 0.00  0.75 -0.05 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 1 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

                

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 0 0.80 0.00  0.80 0.00  0.74 -0.06 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 1 0.80 0.00  0.80 0.00  0.77 -0.03 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 1 0.00 0.00  0.00 0.00  0.00 0.00  0.00 0.00  
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Table 3 – Simulation Results Winsorizing ot Truncating Only x  

Panel A – Infrequent Events z are Independent of x 

 
Parameter 

Values Do Nothing Winsorize Truncate 

Regression 𝛽 𝛾 𝛽 Bias  𝛽 Bias  𝛽 Bias  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 0 0.80 0.00  0.82 0.02 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 1 0.80 0.00  0.82 0.02 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 1 0.00 0.00  0.00 0.00  0.00 0.00  

             

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 0 0.80 0.00  0.82 0.02 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 1 0.80 0.00  0.82 0.02 *** 0.80 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 1 0.00 0.00  0.00 0.00  0.00 0.00  
 

 

Panel B – Infrequent Events z are Correlated with x 

 
Parameter 

Values Do Nothing Winsorize Truncate 

Regression 𝛽 𝛾 𝛽 Bias  𝛽 Bias  𝛽 Bias  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 0 0.80 0.00  0.81 0.01 *** 0.74 -0.06 *** 

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 .80 1 0.90 0.10 *** 0.92 0.12 *** 0.81 0.01 *** 

𝒀 = 𝜶 + 𝜷𝒙 + 𝒆 0 1 0.10 0.10 *** 0.11 0.11 *** 0.04 0.04 *** 

             

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 0 0.00 0.00  0.00 0.00  0.00 0.00  

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 0 0.80 0.00  0.81 0.01 *** 0.74 -0.06 *** 

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 .80 1 0.80 0.00  0.81 0.01 *** 0.77 -0.03 *** 

𝒀 = 𝜶 + 𝜷𝒙 + 𝜸𝒛 + 𝒆 0 1 0.00 0.00  0.00 0.00  0.00 0.00  

 
This table reports simulation results constructed as reported in Table 2. In this table, however, data trimming (winsorizing 
and truncating is performed on x only and y is left a is. ***, **, * symbolize significance at p < 0.01, p < 0.05 and p < 0.10. 
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APPENDIX A – Examples of low frequency events causing extreme outcomes 
 
Extreme Stock Returns 
 
OSICOM Technologies 6/1/1995-5/31/96 (BHAR 459%) 
5/31/96- Press release OSICOM UNIT NAMED SOLE SUPPLIER OF VIDEO EQUIPMENT 
FOR GTE  $259 MILLION ARMY CONTRACT.”  (46% two-day BHAR). 
 
1/19/1996- Press Release “1/19/96 - ROCKWELL TO SELL ITS NETWORK SYSTEMS 
BUSINESS TO OSICOM” (One-day BHAR-47%). 
 
4Kids Entertainment (A licensing Company) -5/1/1998-4/30/1999 
5/17/1998 “Pokemon poised to be pop culture's next big phenomena Digicritters move out of 
Game Boys, into film, TV, toys and more.” (2 day BHAR 30%). 
 
TEKELEC (468% BHAR) 5/2/1994-5/1/1995 
Sept 19,1994 – announce distribution agreement with AT&T – up 25%. 
 
Jones Medical Industries – 5/1/1995-4/30-1996 (BHAR 669%) 
3/18/1996 – Announce a marketing rights deal (up 24% in 3 days). 
 
Extreme Negative Accruals (Examples from bottom 1%) 

 
OPKO Health, Inc. 2007 – (-1,000%)  
Large write off of In-Process R&D  ($243 Million on $40 million of assets in 2007 and assets of 
only $116k in 2006).  
 
CARDINAL COMMUNICATIONS INC -990%, 2002.  
Expenses paid with stock ($2,129,635) and assets of only $407K. 
 
JDS UNIPHASE CORP (-290%, 2001) 
Write down of good will $50 million on assets of $12 million. 
 
Extreme Positive Accruals 
 
Raytech (2001 accruals of 2200%) 
Company emerged from bankruptcy in 2001, and adopted fresh-start accounting.    Accruals 
actually relate to the short-year January –April 2001 and extra-ordinary gain of $6 million on 
assets of 300k. 
 
INSMED (2009 accruals of 206%)  
Gain on sale of an asset amounting to $127 million, with total assets of increasing from $4 
million to $127million.  This was the sale of intangible technology to Merck.   
 
SOMANETICS CORPORATION (2004 accruals of 50%)  
Recognition of a deferred tax asset $6,700,000. 
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APPENDIX B – Examples of studies that use a form of robust regression 
 
Aboody et al. (2010) 

We estimate all equations using a robust regression technique, pooling data across years. The 

procedure begins by calculating Cook’s D statistic and excluding observations with D>1. Then, 

the regression is re-estimated, weights for each observation are calculated based on absolute 

residuals – Huber weights and biweights – and the estimation is repeated iteratively using the 

weighted observations until convergence in the maximum change in weights is achieved. 

Bell et al. (2008) 

To reduce the effects of outliers on estimated effects, we employ bounded influence ordinary 

least squares (OLS) (unreported results using seemingly unrelated regressions yield qualitatively 

similar conclusions). Estimating each model using robust regressions (excluding observations 

with leverage greater than one and smoothly downweighting outliers) does not materially alter the 

results. We report the percentiles and medians in addition to the mean values of the ratios since 

the mean is susceptible to the influence of outliers. 

Chen et al. (2008)  

To mitigate the effect of outliers, we winsorize observations in the outside l percent of each tail of 

each variable in Equation (1), excepting the lower tail of the variables that are bounded below by 

zero and have some zero observations. Our results are substantially unaffected if we do not 

winsorize outliers of the dependent variable, if we delete rather than winsorize outliers, and if we 

make the winsorization/deletion rule more or less stringent within commonly applied levels as 

long as extreme outliers are pulled in or deleted (e.g., 2.5 percent and 0.5 percent winsorization 

rules yield similar results). To reduce the potential effect of influential observations, we estimate 

Equation (1) using least absolute deviation (LAD) estimation, which reduces the weight placed on 

large model residuals compared to least-squares estimation. The results of these approaches are 

reported in Table 5. 

Choi et al. (2009) 

Unless otherwise specified, all of the regressions are estimated after removing outliers that have a 

Cook’s (1977) distance value greater than 4/(sample size). As a result, the actual sample size is 

slightly smaller than 17,837 and varies across the regressions. Finally, we perform a median 

quantile regression and a robust regression to minimize the influence of extreme observations 

without removing them from regression analyses. 

Dyreng and Bradley (2009) 

We use robust regression to control for outliers in all tables. Because robust regression iteratively 
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assigns weights to observations to mitigate the influence of outliers, some observations 

effectively receive a weight of 0, and are not included in the regression. We report the number of 

observations with nonzero weights in the N for each regression, which accounts for the slightly 

varying N from table to table. In a prior version of the paper, we used OLS and truncated all 

variables at the 1st and 99th percentiles. We use robust regression in this version because we 

view the procedure as less subjective. 

Kimbrough (2007) 

In addition, to mitigate the impact of outliers, I report estimates based on Huber M estimation, 

which is a robust estimation method that, instead of minimizing the sum of squared residuals, 

minimizes the sum of less rapidly increasing functions of the regression residuals. 

Ortiz-Molina (2007) 

As it is typical in the executive compensation literature (and evident in Table 1), the right 

skewness of the data and the presence of large outliers require a robust estimation method. 

Following previous research, I use median regression (MR; also known as least absolute 

deviation regression) throughout the analysis. 
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APPENDIX C – Impact of truncation on estimates of β . 

In the analysis below, we show the impact of truncation on estimates of β in the case of one 
independent variable, x. βn, βT, and βh represent coefficients for the entire sample (i=1 to n), the 
sample after truncation (i=1 to T), and the truncated sample (i=T+1 to n). 
 
 

 
 
 
 
 
The analysis above suggests that bias caused by truncation is impacted by the beta coefficient on the 
truncated observations.  In most cases, the direction of the βn and βh will be the same meaning that 
truncation will bias coefficients towards zero except for cases where βh  is of a different sign than the 
underlying parameter value. 
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