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Abstract

DeMiguel et al. (2009b) show that estimation error dwarfs diversification benefits

resulting in näıve diversification (1/N) dominating mean-variance portfolios. We

illustrate the necessary and sufficient conditions for risk-based allocation rules to be

optimal in a mean-variance framework. We show empirically that many common

datasets satisfy such conditions, making these rules preferred to mean-variance in

the presence of estimation error. Our out-of-sample tests show that these rules

outperform both mean-variance and 1/N. Further, we show that clustering the data

using machine learning enhances the diversification benefits of these rules by making

the data closer to the required conditions for optimality.
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Estimating expected returns from time series of realized stock return data is very
difficult...the estimates of variances or covariances from the available time series

will be much more accurate than the corresponding expected return estimates

Robert Merton (1980)

1 Introduction

Diversification is one of the most celebrated concepts in financial economics. As Harry

Markowitz elegantly said: “Diversification is the only free lunch”. Academics and practi-

tioners have developed a myriad of theoretical models in the last 70 years to exploit the

benefits of diversification, and to achieve better portfolios’ performances. However, theo-

retical models have to be estimated, and there is a trade-off between estimation error and

theoretical optimality. Many theoretical models require the estimation of expected returns

which have been notoriously difficult to estimate (e.g. Merton, 1980; Black, 1993).1 There-

fore, both academics and practitioners have developed portfolio allocation rules that seek

diversification based solely on the covariance matrix (risk-based rules), which can be esti-

mated more accurately than expected returns (e.g. Engle, 2002; Engle and Colacito, 2006).

Examples of such rules include risk-parity (Qian, 2011) and volatility timing (e.g. Moreira

and Muir, 2017; Kirby and Ostdiek, 2012; Fleming, Kirby, and Ostdiek, 2001, 2003).2

This paper makes the following contributions: (1) it provides a statistical test for the

necessary and sufficient conditions under which inverse volatility rules (Kirby and Ostdiek,

2012) – whose implied weights are proportional to the inverse of the assets’ volatilities to

the power of a constant γ – are equivalent to the optimal mean-variance portfolio; (2) it

demonstrates that such necessary and sufficient conditions are satisfied for many datasets

empirically; (3) it presents empirical evidence that these rules perform exceptionally well out-

1Black (1993) writes: “Estimating expected returns is hard. Daily data hardly help at all. Only longer
time periods help. We need decades of data for accurate estimates of average expected return. We need
such a long period to estimate the average that we have little hope of seeing changes in expected returns”.

2These rules have recently been used by practitioners as shown by the popularity of risk parity funds
(for example, Bridgewater, AQR Risk Parity Fund, Invesco Risk Parity, BlackRock Market Advantage, etc.)
and also risk parity ETFs (for example, RPAR Risk Parity ETF and Horizons global risk parity ETF).
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of-sample, confirming the predictions from our test of the necessary and sufficient conditions;

and (4) it develops a clustering methodology based on machine learning to enhance the

benefits of diversification for such rules by exploiting some of the properties of the inverse

volatility rules, which will be made clearer below.3

It is well known that there is a trade-off between estimation error and theoretical opti-

mality. An allocation rule that is optimal from a theoretical point of view but subject to

large estimation error might underperform a rule that is theoretically sub-optimal but has

little or no estimation error. In our analysis of the inverse volatility rules, we focus on two

questions: (a) how much do the inverse volatility rules reduce the impact of estimation error

compared to the optimal mean-variance portfolio (tangency portfolio)? And (b) how far are

the inverse volatility rules from the theoretically optimal portfolio? To address the former

question, we first show the analytical distribution of the tangency portfolio weights under

estimation error.4 We then use Monte Carlo simulations to show that estimation error is

greatly reduced when an investor needs to estimate only the volatilities and omits expected

returns and correlations, which is consistent with the evidence in DeMiguel, Garlappi, No-

gales, and Uppal (2009a) and others.5 As expected, our results illustrate that the weights

of the inverse volatility (IVol) portfolio are more stable and robust because the IVol rule is

less affected by estimation error compared to the tangency (TAN) and the global minimum

variance (GMV) portfolios.6 We address the latter question of how far the inverse volatility

rules are from the theoretically optimal portfolio by developing a statistical test of the nec-

essary and sufficient conditions for the weights of the tangency portfolio to be statistically

equivalent to the weights of the inverse volatility rules. Using a confidence interval of 5%,

3A detailed definition of the inverse volatility rules is provided in Section 4.
4We rely on results that appeared in the mathematical finance literature (see for example, Bodnar and

Okhrin, 2011).
5Given the large literature addressing estimation error in portfolio choices, we provide a separate review

in Section 1.1.
6Even if our goal is to evaluate the reduction in estimation error that the IVol has compared to the TAN

portfolio, we report the results for the GMV portfolio as well because it allows us to visualize the estimation
error coming from expected returns, correlations, and volatilities separately. In fact, the TAN portfolio
requires all 3 components to be estimated, the GMV portfolio requires only correlations and volatilities, and
the inverse volatility portfolio only the volatilities.
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we find that for the majority of datasets considered in this study, there exists an inverse

volatility portfolio for a given γ whose weights are statistically equivalent to those of the

mean-variance optimal portfolio.

Next, we conduct an out-of-sample analysis on the performance of inverse volatility port-

folio rules. Our goal is to evaluate how they compare to näıve diversification (1/N rule),

mean-variance optimized portfolios as well as the norm-constrained portfolio of DeMiguel

et al. (2009a) (henceforth DGNU1), which uses only the information from the variance-

covariance matrix. We use 16 different datasets in this study including US equity portfolios

(e.g. Fama-French 25 portfolios based on size and book-to-market), international equity

portfolios (e.g. the Fama-French portfolios for Europe and Japan), a mix of equities, bonds,

commodities portfolios built using data from Bloomberg, a dataset of individual stocks, and

a large set of 76 anomalies in the cross-section of equity returns.7 As in DeMiguel et al.

(2009b), we rely on different metrics to evaluate the performance of the various allocation

rules: Sharpe ratio, Certainty Equivalent Returns (CEQ), and turnover ratios.

We show that inverse volatility rules strongly outperform the 1/N rule in terms of Sharpe

ratios. For example, the inverse volatility rule always delivers a higher Sharpe ratio than

the 1/N rule and is statistically superior in 11 out of the 16 datasets considered in this

paper. In the remaining 5 cases, the difference between the Sharpe ratios of the inverse

volatility rule and 1/N rules is not statistically different from zero. We demonstrate that

these differences in Sharpe ratios lead to large differences in wealth accumulation over time

even after controlling for the same level of risk (volatility). For example, we show that

investing $1 in 1984 in the portfolios of equities, fixed income, and commodities using the

1/N rule would result in a wealth of ≈ $50 in 2019 while investors’ wealth would be almost

four times greater (≈ $190) using the inverse volatility rule. The performance of the inverse

7We start from a sample of more than 200 anomalies, we keep only the ones whose returns are statistically
different from zero according to the methodology in Hou et al. (2018) and obtain a final sample of 76
anomalies. The portfolio of anomalies is of particular interest to both academics and practitioners. By
analyzing the portfolio of 76 anomalies, this paper contributes also to the construction of these “value-
added” strategies in addition to the design of strategic asset allocation.
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volatility rules with respect to the DGNU1 portfolio varies across datasets. In 9 out of 16

datasets, the DGNU1 portfolio performs similarly to the inverse volatility portfolios (i.e.,

exhibiting statistically the same Sharpe ratios) while in the remaining cases, the DGNU1

yields statistically superior Sharpe ratios.

Our contribution in this study is to show that we can develop a statistical test (i.e., the

J-Test discussed in Section 3.1) that can give us an insight into whether the inverse volatility

portfolios are theoretically as optimal as the mean-variance portfolio once we account for

estimation error. We show that for many datasets this is indeed the case and, as expected,

our empirical results back up this finding by revealing that inverse volatility rules perform

well out-of-sample across different datasets. Overall, the out-of-sample performance that we

document provides empirical support to the results of our statistical test. Our contribu-

tion is not to show that the inverse volatility portfolios supersede any portfolio construction

techniques available. We acknowledge that there might be other portfolio construction tech-

niques based on the sole use of the covariance matrix that can outperform inverse volatility

portfolios by leveraging the reduction in estimation error due to the omission of expected

returns.

The inverse volatility portfolio (IVol) also has the property that it is equivalent to the

tangency portfolio when assets have the same Sharpe ratios and equal pairwise correlations.

If these two assumptions (same Sharpe ratios and equal pairwise correlations) were observed

empirically, then the inverse volatility portfolio would be equivalent to the tangency portfolio

but would be considerably less affected by estimation error. While the assumption of equal

Sharpe ratios across assets is not necessarily true, there is evidence that various asset classes

have similar Sharpe ratios over a long period.8 The assumption of equal pairwise correlations

is more restrictive and it does not find empirical support. We ask the question: can we ‘group’

8For example, Van Binsbergen (2020) shows the same Sharpe ratio of 0.22 for both S&P 500 and 10-year
government bond from 1970-2021. Wright et al. (2014) find that the hypothesis of equality for the Sharpe
ratios of 18 iShares ETFs cannot be rejected at the 1% level. Ardia and Boudt (2015) find that the hypothesis
of equality for the Sharpe ratios using hedge fund returns from 2008-2012 cannot be rejected at the 1% level
for 84.22% of all pairs of two Sharpe Ratios.

4



the data such they are closer to such an assumption? In this paper, we show that this is

indeed possible. Specifically, we propose a clustering methodology that clusters together

assets that are highly correlated between each other and exhibit a low correlation with

assets in other clusters. The assets in the same cluster all have high correlations between

each other therefore using the inverse volatility portfolio would be close to the tangency

portfolio (i.e., theoretically optimal). We derive a closed-form solution for the weights of

our clustering methodology and we show analytically that it is identical to the tangency

portfolio when assets follow the two assumptions of equal Sharpe ratios and same pairwise

correlations.

The next step is to decide how to cluster the data and then evaluate whether our cluster-

ing methodology works empirically. To cluster the data, we use machine learning algorithms

to create buckets of assets that are homogeneous within-groups (high correlation) and het-

erogeneous between-groups (low correlation). Therefore, our methodology brings the data

closer to the assumption of equal pairwise correlations across assets because we build inverse

volatility portfolios using the assets within each cluster, which are highly correlated between

each other (i.e., correlations all closer to one for an asset within a cluster). Once we have

the ‘within clusters’ portfolios, we build an inverse volatility portfolio across clusters, which

are close to being uncorrelated (i.e., correlations are close to zero between clusters).9 We

note that clustering the data should improve the performance of the portfolio when there

is a wide variety of pairwise correlations across assets. For example, if all N assets are

uncorrelated, then there are as many clusters as the number of assets and we should not

expect improvements from clustering the data. Similarly, if all the N assets have a high

correlation then they would all belong to the same (unique) cluster and we, again, should

not see benefits from clustering.

Our empirical results show that using machine learning techniques to cluster the data

improves the out-of-sample performance of the portfolio in terms of Sharpe ratios. Specif-

9At the time of rebalancing a portfolio, our methodology clusters the data using only historical informa-
tion and, therefore, it is fully out-of-sample and does not suffer from a look-ahead bias.
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ically, we compare the performance of inverse volatility portfolio rules with and without

clustering the data. We use different clustering techniques and confirm that our results are

robust across various algorithms, although the result is stronger for hierarchical clustering.

Our findings show that clustering enhances the performance especially when there is a large

number of assets to cluster and a large dispersion in the correlations between assets.10 In

most cases, the differences in Sharpe ratios between a portfolio built on clustered vs. unclus-

tered data are large and confirm that clustering the data can provide benefits to investors

when using the inverse volatility rule. For example, the dataset with the 76 anomalies –

which has both a large number of assets and a high average dispersion of correlations –

benefits from hierarchical clustering with increases in the Sharpe ratio in excess of 10%.

1.1 Literature Review

There is a large literature on portfolio allocation that focuses on designing optimal portfolios

while minimizing the impact of estimation error. We can broadly divide the literature into

Bayesian and non-Bayesian methods. We first discuss the literature that uses non-Bayesian

methods, and we explain how this article contributes to it. We then review the strand of the

literature that relies on Bayesian approaches, and we discuss how we apply some of these

methods into our study.

First, some non-Bayesian studies achieve a trade-off between optimality and reducing the

impact of estimation error by introducing structure on the data in order to obtain more sta-

ble estimates of expected returns and covariance matrix (DeMiguel et al., 2014).11 Another

approach is to combine portfolios to balance the trade-off between bias and estimation error.

Examples of papers that follow this approach include Tu and Zhou (2011), Kan and Zhou

(2007), Kan et al. (2021), and Anderson and Cheng (2016). Brandt et al. (2009) model port-

10We build a measure of the average correlation dispersion to evaluate how similar assets are.
11For example, DeMiguel et al. (2014) use a VAR model to capture the serial dependence of stock returns

and use this information to tilt the portfolios’ weights to improve the portfolios’ performance. A similar
approach is followed by the literature on forecasting the covariance matrix (Engle, 2002; Engle and Colacito,
2006, and many others).
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folio weights as a function of firms’ characteristics, and show that their methodology exhibits

an out-of-sample performance which is improved over the standard mean-variance approach

that models the distribution of returns without taking into account firms’ characteristics.

Other authors focused on the timing of strategies. For example, Kirby and Ostdiek (2012)

and Moreira and Muir (2017) propose two simple timing strategies, which update portfolios’

weights based on estimated changes in conditional volatilities.

While this literature enhances our understanding of the estimation of expected returns

and covariances, our study provides both empirical evidence and a theoretical reason that

relying solely on the variance-covariance matrix can be an effective method to greatly reduce

estimation error and still achieve a good out of sample performance. Furthermore, we provide

a statistical test to check whether we should expect inverse volatility portfolios to perform

well on a given dataset.

Second, we move to the strand of the literature using a Bayesian approach to build

optimal portfolios and reduce the effect of estimation error. Diffuse priors and Shrinkage

are common methods used to make estimates of expected returns more stable. Shrinkage

(Neyman, 1961) “shrinks” sample means towards a common “objective” mean. This reduces

the variance of estimates and therefore the estimation error (Jobson and Korkie, 1981).

Popular linear shrinkage methodologies include Jorion (1986), Ledoit and Wolf (2003), Ledoit

and Wolf (2004a) Ledoit and Wolf (2004b). More recently, there are also non-linear shrinkage

methodologies proposed. For example, Ledoit and Wolf (2017) shrink each of the sample

covariance matrix’s eigenvalues individually and determine the optimal shrinkage intensity

for each based on its magnitude. Barroso and Saxena (2019) use the out-of-sample errors

to compute the shrinkage parameters which require minimal assumptions about the data

generating process. Pedersen et al. (2021) show that shrinking the correlations towards zero

leads to better estimates not only of the variance-covariance matrix but also of the expected

returns. The alternative to shrinkage is to form an informative prior using economic beliefs

to reduce the arbitrariness of the statistical methods. In Tu and Zhou (2010), the priors are
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based on economic objectives such as the ratio of expected returns over variance. Pástor

and Stambaugh (2000) and Pástor (2000) use investors’ beliefs in an asset-pricing model to

calculate the shrinkage factor and the common “objective”.

MacKinlay and Pástor (2000) impose a restriction on the expected returns and variance-

covariance estimates. They show that investors can achieve better expected returns estimates

by jointly estimating expected returns using an asset pricing model and accounting for model

misspecification (i.e. missing factors). Jagannathan and Ma (2003) show that imposing a

short-sale constraint (i.e. requiring weights to be non-negative) improves the performance

of mean-variance portfolios and also is equivalent to shrinking the extreme elements of the

covariance matrix. DeMiguel et al. (2009a) propose portfolios that can be interpreted as

resulting from shrinking the portfolio-weight vector instead of shrinking the moments of

asset returns. They provide a Bayesian interpretation for their proposed portfolios and also

for the portfolio by Jagannathan and Ma (2003). Different from the traditional Bayesian

portfolio choice literature, they consider investors having a prior belief on the portfolio

weights rather than asset-return distribution. We rely on this literature and estimate the

covariance matrix using the Shrinkage estimator by Ledoit and Wolf (2004a,b). We present

our empirical results when the covariance matrix is estimated using this Shrinkage estimator

as well as the sample-based estimator.

Last, clustering techniques have been used recently in asset management. For example,

de Prado (2016) uses hierarchical clustering to group assets iteratively and then allocates

weights based on the inverse variance rule. We show the conditions under which clustering

data – not limited to hierarchical clustering – can improve the performance of the inverse

volatility rule. We develop a new clustering technique to build potentially more robust

portfolios leveraging the properties of the inverse volatility rule and we provide empirical ev-

idence that our proposed clustering methodology can improve the out-of-sample performance

of inverse volatility portfolios.

The rest of the paper is organized as follows. Section 2 provides a motivation for the use
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of risk-based allocation rules. Section 3 develops a statistical test and evaluates whether the

inverse volatility portfolios are statistically equivalent to the mean-variance optimal portfolio

on various datasets. Section 4 provides the empirical results for the comparison of risk-based

allocation rules with respect to näıve diversification as well as other portfolios that rely

solely on the use of covariances. Last, Section 5 motivates the use of clustering and shows

the related empirical results. Section 6 concludes.

2 Estimation Error and Performance

This section studies the effect of estimation error on the performance of various allocation

rules: (1) the optimal tangency portfolio, which requires the estimation of both the expected

excess returns and the variance-covariance matrix, (2) the global minimum variance portfolio,

which requires solely the estimation of the variance-covariance matrix, and (3) the inverse

volatility portfolio, which requires the estimation only of the volatilities. We elect to study

the inverse volatility allocation rule because it is one of the risk-based allocation rules that

we use for our empirical analysis in Section 4. The goal of this section is to highlight that

the error caused by the estimation of expected returns is far larger than the error caused by

the estimation of correlations and volatilities.12

2.1 Modeling estimation error and 3 benchmark portfolios

We follow Kan and Zhou (2007) and we consider the portfolio choice of an investor who

chooses a portfolio amongst N risky assets and one risk-free asset. The investor does not

know the true values of excess returns (µ) and variance-covariance matrix (Σ) but estimates

12Several studies have shown that estimates of expected returns are subject to large estimation errors and
lead to inferior performance ex-post (e.g., Michaud, 1989; Merton, 1980; Chopra and Ziemba, 2013; Best and
Grauer, 1991; Broadie, 1993).
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them using their sample-based counterparts

µ̂ =
1

T

T∑
t=1

rt Σ̂ =
1

T − 1

T∑
t=1

(rt − µ̂)(rt − µ̂)′ (1)

where rt is the vector of excess returns for the N risky assets at time t, and T is the length

of the estimation window. Under the assumption that the returns of the N risky assets (rt)

are jointly normal, it is well-known that µ̂ and Σ̂ are distributed as follows

µ̂ ∼ N (µ,Σ/T ) Σ̂ ∼ 1

T
WN(T − 1,Σ) (2)

where N (·) denotes the normal distribution with mean µ and variance-covariance matrix

Σ/T , andW(·) denotes the Wishart distribution with T−1 degrees of freedom and covariance

matrix Σ.

In the presence of estimation error, the optimal weights for the tangency portfolio ŵTAN

are known to be13

ŵTAN =
Σ̂−1µ̂

1′N Σ̂−1µ̂
(3)

where 1N is a vector of ones.

Bodnar and Okhrin (2011) derive the characteristic functions of (T Σ̂)−1µ̂ as follows.

φ(t) =

∫ ∞
0

exp(i
t′Σ−1µ

z
− t′Σ−1t

2Tz2
)fχ2

T−N
(z)φFN−1,T−N+1,Ts

(
i(N − 1)t′Σ−1t

2T (T −N + 1)z2
)dz (4)

where fχ2
T−N

(·) denotes the densities of χ2 with T −N degrees of freedom. φFN−1,T−N+1,Ts
(·)

denotes the characteristic function of the non-central F -distribution with N − 1 and T −
N + 1 degrees of freedom and non-centrality parameter Ts. From Johnson et al. (1995), the

13This follows from the standard optimal portfolio choice problem of Markowitz (1952) and it has been
solved by many authors. For example, see Kan and Zhou (2007) for a mathematical derivation.
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characteristic function can be written as

φFN−1,T−N+1,Ts

(
i(N − 1)t′Σ−1t

2T (T −N + 1)z2

)
= exp

(
−Ts

2

) ∞∑
j=0

(Ts/2)j

j!
× F1 1

(
N − 1

2
+ j,−T −N + 1

2
;
t′Σ−1t

2Tz2

)
(5)

where s = µ′R1µ and R1 = Σ−1 − Σ−11N1′NΣ−1/1′NΣ−11N . F1 1 (a, b;x) is the confluent

hypergeometric function of the first kind defined as Γ(b)
Γ(a)

∑∞
i=0

Γ(a+i)
Γ(b+i)

xi

i!
. However, Okhrin and

Schmid (2006) prove that the estimator for the weights for the tangency portfolio does not

possess finite moments.14 Therefore, we rely on simulations to study the estimation error for

the weights of the tangency portfolio.

The two portfolios that we compare with the tangency portfolio are the inverse volatility

portfolio and the global minimum variance portfolio. The weights of the inverse volatility

portfolio ŵIV ol are defined as

ŵIV ol =
1/σ̄∑N
i=1

1
σ̂i

(6)

where σ̂i is the variance estimate of asset i, and 1/σ̄ = [ 1/σ̂1 1/σ̂2 ··· 1/σ̂N ] is a vector with the

reciprocal of the N asset volatilities.

The optimal weights of the global minimum variance portfolio ŵGMV are

ŵGMV =
Σ̂−11N

1′N Σ̂−11N
(7)

The question that we address in the next section is how errors in expected returns and

volatilities affect the estimation error of the 3 aforementioned portfolios.

2.2 Visualizing the Estimation Error

We investigate how severe the estimation error is by comparing the Sharpe ratios that the 3

aforementioned allocation rules would generate if investors did not know the true values of µ

and Σ. Our procedure can be described as follows. We simulate the expected excess returns

14Okhrin and Schmid (2006) show that the vector of the estimated weights for the tangency portfolio is
infinity while the moments larger than one are not defined.
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and variance-covariance matrix (µ̂ and Σ̂) using Equation (2). For every simulation i, we

have independent draws µ̂i and Σ̂i. Using the allocation rules defined by Equations (3), (6)

and (7), we obtain the optimal weights ŵi,TAN , ŵi,GMV , ŵi,IV ol. When investors use allocation

rule j and there is estimation error, the expected excess returns (µj,P ) and standard deviation

(σj,P ) of the portfolio are:

µ̂j,P = ŵ′jµ σ̂j,P = ŵ′j Σ ŵj (8)

where ŵj are the weights chosen by the investors following allocation rule j (e.g. global

minimum variance). It follows that the Sharpe ratio of allocation rule j subject to estimation

error is:

ŜRj =
µ̂j,P
σ̂j,P

=
ŵ′jµ

ŵ′j Σ ŵj
(9)

If investors knew the true values of µ and σ, the true Sharpe ratio of allocation rule j would

be:

SRj =
w′jµ

w′j Σwj
(10)

where wj are the weights for rule j when the investors know the true values of µ and Σ.

In Figure 1, we plot the portfolios performance in terms of expected excess returns µj,P

and covariances σj,P for 5,000 simulations when investors are subject to estimation error.

On the y-axis, the figure shows the average portfolio excess return while the x-axis shows

its standard deviation. In all panels, the green solid line shows the efficient frontier using

the true mean excess return µ and variance-covariance matrix Σ. All rates, variances, and

volatilities reported are at a monthly frequency and the estimation window used is T = 60

months (5 years).15 The true volatility of each asset i (σi) is the same across all simulations.16

In all panels, assets are assumed to have the same Sharpe ratios. That is, for any two assets

15The effect of the length of the estimation window is studied further below in Internet Appendix C.
16We set the true volatility by randomly drawing from a uniform distribution between 10% and 40% for a

fixed seed so that the true volatility is the same across simulations. We also ran untabulated robustness tests
for different ranges (e.g. random draw from a uniform distribution between 15% to 30%, normal distribution
with mean 20% and 5% standard deviation). The results are qualitatively the same.
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i, j, we assume that µi/σi = µj/σj = 1/12. Since our simulations are done with a monthly

frequency, assuming a monthly Sharpe ratio of 1/12 corresponds to annualized Sharpe ratio

of approximately 28.87%. This assumption might seem ad-hoc but it is justified by an

empirical observation. See for example, Van Binsbergen (2020), Wright et al. (2014), and

Ardia and Boudt (2015).

[Insert Figure 1 here]

The takeaways from Figure 1 can be summarized as follows: (i) the tangency portfolio

presents a much wider dispersion than the other two portfolios, thus confirming the results

from the literature (Michaud, 1989; Merton, 1980; DeMiguel et al., 2009b) that errors in

expected returns greatly affect the performance and stability of the assets’ weight; (ii) the

severity of the dispersion in asset weights increases when we increase the number of assets

as shown by comparing Panel A (5 assets) and Panel B (15 assets).17

3 When is inverse volatility equivalent to the tangency

portfolio?

This section is organized as follows. Section 3.1 discusses a test for the necessary and

sufficient conditions under which inverse volatility rules are equivalent to the mean-variance

portfolio. Section 3.2 describes the empirical datasets used in this study. Section 3.3 provides

a formal definition of the various allocation rules considered in this study. Last, in Section 3.4,

we apply such a test to the empirical datasets and discuss the results.

17The fact that the performance of the TAN portfolio is negatively affected by the increase in the number
of assets has been shown empirically by several studies (e.g. Brandt et al., 2009; Simaan, 1997).
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3.1 Necessary and sufficient conditions for optimality of IVolγ

portfolios

In this section, we discuss the necessary and sufficient conditions for the γ-inverse volatility

portfolio to be equivalent to the tangency portfolio (MVO).18 The test is based on the

Generalized Method of Moments (GMM). Let µ and Σ be the mean and covariance matrix

of N risky assets. We can write the weights of the tangency portfolio and generalized inverse

volatility portfolio of the N assets as follows

wMVO =
Σ−1µ

1′NΣ−1µ
, (11)

wIV olγ =
D−γ1N

1′ND
−γ1N

, (12)

where Dγ ≡ Diag(Σ)
γ
2 = Diag(σγ1 , . . . , σ

γ
N) is a diagonal matrix of the volatility to the power

of γ of the N assets.

Proposition 1. A necessary and sufficient condition for wMVO = wIV olγ is that the cross

product of Σ−1µ and D−γ1N is a vector of zeros (i.e., Σ−1µ×D−γ1N = 0N).

We provide the proof of Proposition 1 in Internet Appendix A.

The next step is to develop a statistical test to evaluate the equivalence between tangency

and inverse volatility portfolios.

Proposition 2. Let wMVO and wIV olγ be defined as in Equation (11) and Equation (12).

The null hypothesis that the inverse volatility portfolio for a given γ is equivalent to the

tangency portfolio can be tested using the following statistics

J = T (P ′ĉ)′(P ′V̂ (ĉ)P )−1(P ′ĉ)
d→ χ2

N−1, (13)

where P is an N(N−1) orthonormal matrix with its columns orthogonal to 1N , ĉ = D̂γΣ̂−1µ̂,

µ̂ = 1
T

∑T
t=1Rt, Σ̂ = 1

T

∑T
t=1(Rt− µ̂)(Rt− µ̂)′, D̂γ = Diag(Σ̂)

γ
2 , and Rt is a vector of returns,

18We are immensely grateful to Raymond Kan for his suggestion and help on the derivation of this test.
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and V̂ (ĉ) is a consistent estimator of V (ĉ).

We provide the proof of Proposition 2 in Internet Appendix A.

The null hypothesis H0 of the test in Equation (13) is that the inverse volatility portfolio

for a given γ is equivalent to the tangency portfolio. If the test cannot reject H0, it means

that the weights of IVolγ and MVO portfolios are statistically indistinguishable. What is

the intuition behind our test? We know that the tangency portfolio is the portfolio that

maximizes the Sharpe ratio, and any portfolio different from the tangency portfolio achieves

a lower in-sample Sharpe ratio. However, we ought to know whether the difference with the

tangency portfolio is statistically significant and our test provides an answer to this question.

3.2 Description of the datasets

We consider 16 different datasets which we group into Multi-Assets datasets, which contain

both equities, fixed and commodities, Equities-Only datasets, and a set of anomalies in the

cross-section of equity returns.

For the Equities-Only datasets, we use various portfolios of domestic and international

equities. We consider various industry portfolios of domestic equities based on the classifica-

tion of Kenneth French: the 10 Industry portfolios (10 Industries), the 17 Industry portfolios

(17 Industries), the 30 Industry portfolios (30 Industries), and the 49 Industry portfolios (49

Industries) from Kenneth French’s website.19 These portfolios allow us to evaluate the ro-

bustness of our results across various definitions of industries as well as a various number of

assets. We also consider portfolios sorted on several firms’ characteristics. We download data

from Kenneth French’s website for the 25 portfolios sorted on size and book-to-market (25

Size and B/M), and the 25 portfolios sorted on size and operating profitability (25 Size and

Operating Prof). We also consider the 12 portfolios based on the Fama and French (2015)

5-factor model (12 FF5 Portfolios): 3 portfolios sorted on book-to-market (low, medium,

high), 3 portfolios sorted on investment (low, medium, high), 3 portfolios sorted on operat-

19The data can be downloaded from Kenneth French’s website at
https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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ing profitability (low, medium, high), and 3 portfolios sorted on size (low, medium, high).

Last, in the domestic equity group, we consider 11 portfolios based on the q-factor model

of Hou, Xue, and Zhang (2015) and Hou, Mo, Xue, and Zhang (2019) (11 q-Portfolios): 3

portfolios sorted on ROE, 3 portfolios sorted on investment over asset ratio, 3 portfolios

sorted on expected growth, and 2 portfolios sorted on size. Last, we also consider a dataset

of individual stocks. Specifically, we select 75 random individual U.S. stocks, which traded

continuously on the market between 1967 and 2019 to have a balanced panel of data.

For the international portfolios of equities, we consider the 25 portfolios sorted on size and

book-to-market using Japanese stocks (25 Japan Size and B/M), the 25 portfolios sorted on

size and book-to-market using European stocks (25 Europe Size and B/M), the 25 portfolios

sorted on size and book-to-market using Asian stocks excluding Japan (25 Asia (exc. Japan)

Size and B/M). All these portfolios are available from Kenneth French’s website.

For the Multi-Asset Portfolios, we consider a set of assets that include equities, fixed in-

come, and commodities. We build this set by using two large indices of equities, S&P 500 and

Russell 2000. These two indices cover well both the large cap (S&P 500) and the small cap

(Russell 2000). For the fixed income indices, we use the total returns for 10- and 30-year US

government bonds from Global Financial data – tickers TRUSG10M and TRUSG30M. For

commodities, we use four indices: the S&P GSCI Total Return Index (ticker GTCD) and

the Goldman Sachs Commodity Price Index (ticker SPGSCID) which are both composite

indices of various commodities returns, the S&P GSCI Livestock Index (ticker SPGSLVD)

and S&P GSCI Industrial Metals Index (ticker SPGSIND) which capture the returns of

Livestock and Metal commodities. We build a set called “Equity, Fixed Income, Commodi-

ties, and 10 S&P Industries” by adding 10 S&P industry portfolios from Bloomberg (tickers

SPTRSC10 Index, SPTRSC20 Index, and so on) to the set of equities, fixed, and commodi-

ties. We add this set to increase the number of assets and, as we show in Section 5, show

that when the number of assets is sufficiently large and dispersed in terms of correlations,

clustering the data can improve the out-of-sample performance of the inverse volatility rule.
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[Insert Table 1 here]

Last, we consider 76 anomalies in the cross-section of equity returns, which are also

known as “absolute return strategies”, as datasets. The list of the anomalies can be found

in Internet Appendix D. We compiled the set of 76 anomalies as follows. Following Hou,

Xue, and Zhang (2018), we only consider anomalies that have been constructed using value-

weighted returns, NYSE-breakpoints and that generate excess returns that are statistically

different from zero. If the authors of the original study publish the data, we download

the anomalies from their websites. Otherwise, we build them ourselves. All the anomalies

studied in this paper produce excess returns that are statistically significant from zero for

the time period from 1981 to 2019. In Internet Appendix D, we list all the anomalies as well

as the reference paper that we followed to replicate them or the paper of the authors from

whom we obtained the data.

For all the aforementioned datasets, we calculate excess returns with respect to the risk-

free rate, which is downloaded from Kenneth French’s website. A list of the portfolios

described above and the details of when the data start and end are provided in Table 1.

3.3 Description of the allocation rules

In our empirical tests, we benchmark against the equally weighted portfolio (1/N) as well

as the norm-constrained portfolio of DeMiguel, Garlappi, Nogales, and Uppal (2009a). The

1/N portfolio – which gives the same weight to all assets and does not require the estima-

tion of expected returns or variance-covariance matrix – has been shown to be robust across

many datasets and outperforms mean-variance optimization (DeMiguel, Garlappi, and Up-

pal, 2009b). In our empirical tests, we report the results for the tangency portfolio (MVO) as

well as various inverse volatility portfolios for various levels of gamma. For ease of notation,

we label the inverse volatility rule for a given γ as the IVolγ rule. We describe the MVO

and IVolγ rules below.
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Regarding the MVO Rule, at each rebalancing date, t investors choose the optimal weights

wt,MV O to maximize the quadratic utility function

wt,MV O = arg max
wt

w′tµ̂t −
λ

2
w′tΣ̂twt

where µ̂t is the estimated vector of expected returns, Σ̂t is the estimated variance-covariance

matrix, and λ is the risk aversion coefficient. The solution to the above problem is20

wt,MV O =
Σ̂−1
t µ̂t

1′N Σ̂−1
t µ̂t

In our empirical results, we calculate the norm-constrained portfolio following DeMiguel

et al. (2009a). We label this portfolio “DGNU1” as we use the 1-norm constraint with

the threshold parameter calibrated by maximizing portfolio return in the previous period.

We choose the 1-norm constraint because it contains the minimum variance portfolio with

short-sales constraints as a special case when the threshold parameter is equal to 1.21

A key point is how to estimate the expected returns (for the MVO portfolio only) and

covariance matrix. In our main results, we use sample-based estimates of expected returns.

For the covariance matrix, we use a “robust” estimate using the Shrinkage estimator of Ledoit

and Wolf (2004b).22 We elect to use the Shrinkage estimator of Ledoit and Wolf (2004b)

because it has been shown to provide better out-of-sample results compared to the sample-

based estimator. For the datasets that contain less than 60 portfolios, we use an estimation

window of 60 months. For those datasets with more than 60 assets (76 Anomalies, and

Individual Stocks), we use a longer estimation window of 120 months.

20This is a well-known solution and we omit the derivation in the interest of brevity. We refer to Best
(2010) for a textbook treatment of the derivation of this result.

21We prefer the 1-norm to the 2-norm constraint because the 2-norm constraint is very close to the 1/N
portfolio. As DeMiguel et al. (2009a) write “we would expect that the 2-norm-constrained portfolios will, in
general, remain relatively close to the 1/N portfolio and thus will assign a positive weight to all assets.”

22Ledoit and Wolf (2004b) show that the largest (smallest) sample eigenvalues are systematically biased
upwards (downwards). They develop a shrinkage estimator that corrects this bias by pulling down (up) the
largest (smallest) eigenvalues toward the mean of all sample eigenvalues.
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IVolγ Rule. According to the γ-inverse volatility portfolio (Kirby and Ostdiek, 2012),

the weights of each asset are proportional to the inverse of their volatility to the power of γ.

Formally, the optimal weights of the inverse variance portfolio wt,IV ol are

wt,IV ol =

(
1/diag(

√
Σ̂t)
)γ

∑N
i=1

1

(̂σt,i)
γ

where 1/diag(
√

Σ̂t) is a vector with the reciprocal of the assets’ volatilities. Last, all allo-

cation rules are rebalanced monthly.

3.4 Using the J-test empirically

We apply the test in Equation (13) to our datasets and report the results in Table 2. In

Table 2, we report the p-value of the test (row “J p-val” for each dataset) as well as the

in-sample Sharpe ratio of the IVolγ rule for various levels of γ (row “SR”). First, we note

that for γ = 0 – which is the same as the 1/N rule – , the IVol0 shows a p-value that is

always lower than 5% with the exception of three cases (30 Industries p-value = 0.087, 25

Japan Size and B/M p-value = 0.08, and Individual Stocks p-value of 0.475). This implies

that our test rejects the null hypothesis that 1/N is equivalent to the tangency portfolio

at a 5% significance level for the majority of datasets considered in this study. Our result

demonstrates via a statistical test that näıve diversification is sub-optimal compared to the

tangency portfolio. Interestingly, for many datasets increasing the value of γ also increases

the p-value of the test, and often the test cannot reject the null hypothesis. This means

that we cannot reject the null hypothesis that IVolγ is equivalent to the tangency portfolio

greater than or equal to 1. This is surprising because it means that, for various levels of γ,

investing in the IVolγ rule is not statistically different from the optimal tangency portfolio

and it requires fewer parameters to be estimated (i.e. volatilities only). Therefore, our

results provide a justification for why the inverse volatility rules are known to perform well
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out-of-sample (e.g., Kirby and Ostdiek, 2012) and outperform mean-variance portfolios.

A special observation is required for the dataset of Individual Stocks. The p-value of

the test is close to 1, strongly suggesting that the test cannot reject the null hypothesis of

equivalence between mean-variance and inverse volatility portfolios. The p-values for this

dataset of Individual Stocks are much higher than the p-value for the datasets formed on

portfolios suggesting that the higher idiosyncratic volatility – which affects individual stocks

much more than portfolios – makes the mean-variance portfolio statistically equivalent not

only to the inverse volatility portfolios but also to 1/N. In other words, when building a

portfolio of individual stocks, a simple equally weighted portfolio is not statistically different

from a mean-variance optimal portfolio.

Overall, Table 2 shows that IVolγ rules are closer to theoretical optimality compared to

the 1/N rule. Of course, our test is conducted in-sample and it does not take into account

the effect of estimation error. The 1/N rule does not suffer from estimation error while IVolγ

rules have some estimation error due to the estimation of the assets’ volatilities. Does the

estimation error dwarf the benefits of diversification from the IVolγ rules? We demonstrate

in the next section that this is not the case.

[Insert Table 2 and Figure 2 here]

Our test can also be used to visualize what the optimal γ should be from an in-sample

analysis. Figure 2 plots the p-values from the J-test described in Section 3.1 for the three

datasets that have a combination of equities, fixed, and commodities. Panel A plots the

p-value for the set of Equities, Fixed, and Commodities which exhibits a bell curve with

a maximum of around 2.8. Although for no value of γ the p-value is higher than 5% (i.e.

the tests always reject the hypothesis of equivalence with the tangency portfolio), the figure

suggests that for γ = 2.8, the IVolγ strategy would have historically performed better than

IVol0 or IVol1 which exhibit a p-value of almost zero. Panel B and Panel C show qualitatively

similar results when we plot the p-value for the “Equity and Fixed Income” and “Equity,
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Fixed Income, Commodities and 10 S&P Industries” datasets. We highlight that this analysis

is conducted in-sample and it provides a visualization of the statistical test using the available

history of data. We address the out-of-sample performance of the various strategies in

Section 4.

4 Out-of-Sample Tests

4.1 Empirical Out-of-Sample Performance

Our aim is to study the performance of the inverse volatility rules across the various datasets

described in Section 3.2. We start by analyzing the performance of the Sharpe ratios. Table 3

presents the monthly Sharpe ratios.23 The column “Dataset” contains the name of the

dataset. The various allocation rules are: (1) the “1/N” rule (näıve diversification); (2) the

tangency portfolio from Mean-Variance Optimization (MVO); (3) the 1-norm-constrained

portfolio developed in DeMiguel et al. (2009a); and (4) the IVolγ rule for γ ∈ {1, 2, 3, 4, 5}.

In parenthesis, we report the p-value of the test for the difference between Sharpe ratios of

each allocation rule with respect to 1/N, which is the näıve diversification benchmark. We

develop our own GMM test for the equality of Sharpe ratios, which is described in Internet

Appendix B. While Memmel (2003)’s test – which is commonly used (e.g., DeMiguel et al.,

2009b) – requires the data to be normally distributed, the test presented here does not

require such an assumption and is therefore more general.

Table 3 shows that inverse volatility rules strongly outperform the 1/N rule in terms of the

Sharpe ratio. Specifically, the IVol1 always delivers a higher Sharpe ratio than the 1/N rule,

and it is statistically superior – at a 5% significance level – in 11 out of 16 datasets considered

in this study. In Internet Appendix F, we show that these differences in Sharpe ratios lead

to large differences in wealth accumulation over time even after controlling for the same level

of risk (volatility). An interesting point is to connect the results from Table 2 with those

23We describe the performance measures in Internet Appendix E.
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of Table 3. For example, in Table 2, we showed that for the dataset “Equities, Fixed and

Commodities”, our J-test showed that the in-sample γ that would yield the highest Sharpe

ratio is 2.8. Interestingly, Table 3 confirms this: the SR for IVol3 (i.e., using a γ = 3 ≈ 2.8)

is the largest and it is statistically different from the SR of the 1/N portfolio. For higher

values of γ, the p-value of the test for the equality between 1/N and the IVolγ starts to

increase, thus showing that we cannot reject the null hypothesis of equality in Sharpe ratios.

Indeed, for γ = 5, the SR is 0.337 – which is greater than the 0.235, the SR of 1/N – but the

p-value of the test for the null hypothesis that the two Sharpe ratios are statistically equal

cannot be rejected at the 5% confidence level (i.e, p-value = 0.066).

Overall, our findings provide empirical support to the statistical test results discussed in

Section 3. We showed in Table 2 that for many datasets there is no statistical difference

between the weights of the optimal mean-variance portfolio (TAN) and the inverse volatility

rules (IVolγ). In the out-of-sample tests presented in Table 3, we show that the inverse

volatility rules are not only equivalent to the tangency portfolio but they outperform it

because of lower estimation error as they do not require the estimation of expected returns

and correlations.

Our results also provide another insight into why inverse volatility rules perform better

than 1/N. In Table 2, we showed that the p-value for the test of the null hypothesis that

the 1/N rule is equivalent to the tangency portfolio is lower than the p-value of the test

using inverse volatility rules. This means that our test rejects with higher confidence the

null hypothesis that 1/N is optimal in a mean-variance framework compared to the null

hypothesis that inverse volatility rules are optimal. Our out-of-sample tests show that the

inverse volatility rules outperform 1/N even in the presence of estimation error (which is

absent in the 1/N rule). This implies that in the majority of cases the diversification benefits

from the inverse volatility rules outweigh the drawbacks caused by estimation error.

[Insert Table 3 and Table 4 here]
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How do inverse volatility portfolios fare with respect to recently developed portfolios

that use only covariances as input? We address this question in Table 4 where we report the

Sharpe ratios of the various allocation rules again but this time we report the p-value (in

parenthesis) for the test of the null hypothesis that the Sharpe ratio of a given allocation

rule is equivalent to the DGNU1 portfolio. The DGNU1 is the 1-norm-constrained portfolio

developed in DeMiguel et al. (2009a), which is closely related to the global minimum variance

portfolio but with a norm-constraint on the asset weights. This portfolio has the advantage of

not using expected returns, thus reducing estimation error. In general, the DGNU1 portfolio

performs very well and it vastly outperforms both 1/N as well as the mean-variance portfolio

(MVO). The next logical question to address is whether the DGNU1 portfolio supersedes

inverse volatility portfolios. The answer to such a question largely depends on which dataset

we consider. For example, for the “Equities and Fixed Income” dataset, the Sharpe ratios of

the DGNU1 portfolio and the inverse volatility portfolios are statistically identical as shown

by the high p-values (in parenthesis). That is, our analysis shows that the data cannot reject

the null hypothesis test that the Sharpe ratios are equal between a given inverse volatility

portfolio and the DGNU1 portfolio. For other datasets, such as the “76 Anomalies” dataset,

the DGNU1 portfolio performs better than the inverse volatility portfolios as shown by the

low p-values.

Overall, in 9 out of 16 datasets the DGNU1 portfolio performs similarly to the inverse

volatility portfolios (i.e., exhibiting statistically the same Sharpe ratios) while in the remain-

ing cases, the DGNU1 yields statistically superior Sharpe ratios. As we discussed above,

our contribution is not to show that the inverse volatility portfolios supersede any portfo-

lio construction techniques available. We acknowledge that there might be other portfolio

construction techniques based on the sole use of the covariance matrix that can outperform

inverse volatility portfolios by leveraging the reduction in estimation error due to the omis-

sion of expected returns. However, our contribution in this study is to show that we can

develop a statistical test (i.e., the J-Test discussed in Section 3.1) that can give us an insight
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into whether the inverse volatility portfolios are theoretically as optimal as the mean-variance

portfolio once we account for estimation error.

After the analysis of Sharpe ratios, we turn our attention to certainty equivalent returns

(CEQ), which we study in Table 5. For ease of readability, we multiply the CEQs by 100.

Despite not being the result of an optimization problem that maximizes the quadratic utility

function, Table 5 shows that inverse volatility rules achieve an overall good performance in

terms of CEQs. The CEQs of inverse volatility portfolios are either statistically superior or

identical to those of 1/N in all datasets with the exception of the dataset of “76 Anomalies”

for which IVolγ rules exhibit lower CEQs than 1/N.

We study the turnovers in Panel A of Table 6. An allocation rule that has lower turnover

leads to lower transaction costs and, therefore, higher net of fees returns. The turnovers of

inverse volatility rules are on average lower than that of the 1/N rule. For example, the IVol1

rule applied on the set of “76 Anomalies” leads to a turnover that is 7% lower than that of

the 1/N rule as shown by the fact that the ratio of the turnover of IVol1 over the turnover

of 1/N is 0.93. This result combined with the fact that inverse volatility rules also deliver

higher Sharpe ratios implies that the return net of transaction costs of the IVolγ rules are

considerably higher than that of the 1/N rule. Notably, the turnover of the DGNU1 portfolio

– which performs very well in terms of Sharpe ratios and CEQs – exhibits large turnover

ratios compared to the inverse volatility portfolios in the majority of datasets. For example,

using the set of “Individual Stocks”, the ratio of the inverse volatility portfolios’ turnover

with respect to the 1/N rule ranges between 0.78 and 0.95 depending on the value of γ

while it is equal to 2.46 for the DGNU1 portfolio. This means that the ratio of the turnover

between the DGNU1 and inverse volatility portfolios ranges between 2.59 (=2.46/0.95) and

3.15 (=2.46/0.78). Last, consistent with the findings in DeMiguel et al. (2009b), Panel A

of Table 6 shows that the turnovers of the tangency portfolio (TAN) are larger than the

turnovers of the 1/N rule for almost all datasets.

[Insert Table 5 and Table 6 here]
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In Panel B of Table 6, we show the annualized return-gain of each allocation rule with re-

spect to the 1/N rule in terms of Sharpe ratios. The return-gain is defined in Equation (E.4)

and we assume that there are proportional transaction costs as described in Internet Ap-

pendix E. The inverse volatility rules have a positive return-gain in the vast majority of

cases. This means that the 1/N rule would have to deliver additional net of transaction

costs returns in order to perform as well as these rules. Specifically, the return-gains are

positive for all datasets with the exception of the “76 Anomalies” and the set of “Equity,

Fixed Income”. Overall, the results in Panel B of Table 6 combined with the results in

Table 3 show that IVolγ portfolios not only deliver a higher Sharpe ratio before transaction

costs but also an even greater Sharpe ratio when investors take into account transaction

costs. For most datasets, the 1/N rule would have to deliver an extra ≈ 1% per year, after

transaction costs, in order to perform as well as the inverse volatility rules in terms of the

Sharpe ratio.

5 Does clustering improve the performance?

5.1 Clustering with Inverse Volatility Rule

We have shown so far that the IVolγ portfolios outperform näıve diversification and mean-

variance optimized portfolios and, more importantly, we built a statistical test (i.e., the J

test described in Section 3) to check whether the inverse volatility rules are equivalent to

the mean-variance portfolio from a statistical point of view. For the development of the

test, we leveraged the properties of the inverse volatility rules portfolios. In this section, we

conduct a similar analysis: we ask whether we can use a property of the inverse volatility

portfolio – which we discuss below – in order to increase its out-of-sample performance via

clustering. We describe our intuition in two steps: (i) we discuss the property of the inverse

volatility portfolio that makes it optimal – even in the absence of estimation error – from

a mean-variance portfolio when assets have the same Sharpe ratio and cross-correlations
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are all equal; (ii) while there is empirical evidence that various assets have similar Sharpe

ratios over a long period (e.g., Van Binsbergen, 2020), we do not find evidence that pairwise

correlations are the same across assets which makes the inverse volatility rule different from

the mean-variance portfolio in the absence of estimation error; (iii) we describe how clustering

via machine learning can bring the data closer to the required assumption of equal pairwise

correlations, thus making the inverse volatility portfolio close to the theoretically optimal

mean-variance portfolio.

First, we show that under the assumption that Sharpe ratios across assets are equal and

if pairwise correlations are the same then the inverse volatility portfolio converges to the

optimal tangent portfolio. Formally, assume that we have N assets with a vector of excess

returns and covariance matrix equal to µ and Σ, respectively. Let us define a matrix with

the volatilities on the diagonal

D ≡ Diag(Σ)1/2 =



σ1 0 · · · 0

0 σ2 · · · 0

...
. . .

...

0 · · · · · · σN


Proposition 3. Let (i) s̄ be the Sharpe ratio common to all assets such that µi/σi = s̄ for

each asset i ∈ {1, 2, · · ·N}, and (ii) and let the correlations across any two assets i, j be equal

to the constant ρ (i.e., ρi,j = ρ for each i, j, where ρi,j is the correlation between assets i and

j). Then the inverse volatility portfolio is equivalent to the optimal mean-variance portfolio

(i.e., wIV ol1 = wMVO, where wIV ol1 = D−11N
1′ND

−11N
and wMVO = Σ−1µ

1′NΣ−1µ

Proof. Using the assumption (ii) from Proposition 3 that pairwise correlations are all equal,
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let us rewrite the correlation matrix Q as

Q =



1 ρ · · · ρ

ρ 1 · · · ρ

...
. . .

...

ρ · · · · · · 1


= ρ1N1′N + (1− ρ)IN

where IN is the identity matrix, and 1N is a column vector of ones. We can write the

variance-covariance matrix as

Σ = D ·Q ·D (14)

.

By definition of the inverse volatility portfolio (see Equation (12)), we have that the

weights wIV ol1 are proportional to D−1 · 1N . We also know that the weights of the tangency

portfolio wTAN are proportional to Σ−1 · µ as it can be seen from Equation (11). We can

therefore write Σ−1 ·µ = D−1 ·Q−1 ·D−1 ·µ using Equation (14). Formally, we can write the

weights of the IV ol1 and MVO portfolios as follows

wIV ol ∝ D−1 · 1N

wTAN ∝ D−1 ·Q−1 ·D−1 · µ

To prove that wTAN = wIV ol it is sufficient to show that (a) µ is proportional to D · 1N and

(b) that Q−11N is proportional to 1N .

To prove (a) (i.e., that µ is proportional to D1N), we use the assumption (i) that Sharpe

ratios across assets are equal to s̄ and we can write µ = s̄D1N . This proves that µ ∝ D1N

when Sharpe ratios are equal across assets.

To prove (b) (i.e., that Q−11N is proportional to 1N), we proceed in two steps.

First, we show that one of the eigenvectors of Q is 1N . Consider the matrix B ≡
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Q+ (ρ− 1)IN whose elements are all equal to ρ. Note that

B1N =



ρ ρ · · · ρ

ρ ρ · · · ρ

...
. . .

...

ρ · · · · · · ρ


1N =



Nρ

Nρ

Nρ

Nρ


= Nρ ·



1

1

1

1


= Nρ1N

which proves that 1N is an eigenvector of B. Let x be an eigenvector of Q and λx be its

associated eigenvalue. It follows that

Qx = λxx

(Q+ (ρ− 1)IN)x = λxx + (ρ− 1)INx =⇒

(Q+ (ρ− 1)IN)x = (λx + ρ− 1)x =⇒

Bx = (λx + ρ− 1)x (15)

The last step in Equation (15) follows from the definition of the matrix B. Equation (15)

shows that the matrices Q and B have the same eigenvectors. Therefore, since 1N is an

eigenvector of B, it is also an eigenvector of Q.

Second, using the fact the pairwise correlations are constant, we can write Q = ρ1N1′N +

(1− ρ)IN . Since one of the eigenvectors of Q is 1N then we can write Q1N = λ1N , where λ

is the associated eigenvalue. It follows that Q−11N = 1
λ
1N . This proves that, when pairwise

correlations are constant across assets, Q−11N ∝ 1N .

5.2 How can clustering be useful in conjunction with the Inverse

Volatility rule?

Having proven that theoretically when Sharpe ratios and pairwise correlations are equal

across assets, the inverse volatility portfolio is equivalent to the optimal tangency portfolio
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in a mean-variance framework, we check whether the two assumptions hold empirically.

These two assumptions are clearly violated when we look at the data but there are two

considerations: (1) many assets have similar Sharpe ratios. For example, Wright et al.

(2014) find that the hypothesis of equality for the Sharpe ratios of 18 iShares ETF cannot

be rejected at the 1% level. Ardia and Boudt (2015) find that the hypothesis of equality for

the Sharpe ratios using hedge fund returns from 2008 to 2012 cannot be rejected at the 1%

level for 84.22% of all pairs of two Sharpe Ratios. Van Binsbergen (2020) shows the same

Sharpe ratio of 0.22 for both S&P 500 and 10-year government bond from 1970-2021. (2) it is

possible, as we show below, to group together assets such that they have similar correlations

with each other. On the latter point, in this section, we propose a methodology to build

a portfolio by leveraging clustering techniques and the properties of the inverse volatility

portfolio.

We can summarize our proposal as follows: (i) first we cluster the data such that their

pairwise correlations are close to being equal and build inverse volatility portfolios within

each cluster; (ii) in a second stage, we build a portfolio across clusters in which they all

exhibit low pairwise correlations across them. Our goal is to cluster together assets that have

a high correlation with each other. Having high correlations between assets within a cluster

brings the data closer to the feature of equal pairwise correlations, which would make inverse

volatility portfolios identical to the tangency portfolio from an optimality standpoint – but

with the added benefit of lower estimation error. Furthermore, assets belonging to different

clusters will have low correlations which again makes the data closer to the assumption of

equal pairwise correlations. Our results highlight that machine learning does not have to

be a black-box but we can uncover the reasons that lead it to improve the performance of

diversification.24

24Our proposed clustering methodology differs from de Prado (2016) in that it can be used with various
clustering methodologies while de Prado (2016) is bounded to hierarchical clustering.
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5.2.1 How can investors build portfolios using clustering?

While we provide the intuition behind our clustering methodology above, we provide a

formal description in this section. The machine learning literature provides a great number

of clustering techniques. The common goal of the various algorithms is to generate a set

of clusters, where each cluster is distinct from each other cluster, while the assets within

each cluster are similar to each other. We consider four different methodologies: hierarchical

clustering with Single link, Density-Based Spatial Clustering of Applications with Noise

(DBSCAN), and K-means hierarchical clustering with Ward link.

The clustering methodology can be summarized as follows and it is the same for all

algorithms: (1) compute the distance matrix based on the correlation matrix of the assets;

(2) choose the optimal number of clusters based on the Silhouette score for the chosen

clustering algorithm; (3) cluster the data using the chosen algorithm and the optimal number

of clusters from (2).

First, the distance matrix is a matrix that provides information on the similarity of

the various assets. We use the correlation matrix to build the distance matrix based on the

Euclidean distance. Formally, we denote Q the N×N correlation matrix and DM the N×N

distance matrix, where N is the number of assets. The element i, j of DM is calculated as

DMi,j =

√√√√ N∑
n=1

(Qn,i −Qn,j)2 (16)

Equation (16) is the Euclidean distance between the correlations of asset i and asset j. We

use this measure because elements that have a high correlation between each other and

similar correlations with the other assets will have a low distance. One could argue that we

could simply use the correlation matrix as a measure of distance. However, this would imply

that the distance between two assets i and j uses only the information on the correlation

between i and j while the expression in Equation (16) uses also the information about the

correlations of assets i and j with the other assets. For ease of notation, we omitted the time
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t subscript in Equation (16) but it is worth noting that we re-calculate the distance matrix

monthly (i.e., at each portfolio rebalancing date).25

Second, it is important to have a methodology that can endogenously determine the

number of clusters without requiring user input. This is to ensure that the methodology is

truly out-of-sample and it is not the result of data-mining or fine-tuning of the parameters.

Each algorithm possesses tuning parameters that when changed lead to a different number

of clusters being detected. For example, the DBSCAN algorithm requires us to specify

the maximum distance between two assets for one to be considered as in the same cluster

as the other, hierarchical clustering requires the definition of a threshold that affects the

number of clusters, etc. We choose the tuning parameter of each algorithm by maximizing

the Silhouette coefficient. An example will help to clarify the methodology.

Let us assume that we have a set of 5 assets and that, after grouping them using hier-

archical clustering with Single linkage, we obtain the dendrogram shown in Figure 3. The

y-axis contains the distance measure between clusters while the x-axis contains the assets (5

assets, numbered from 0 to 4). If we choose a value of 0.7 as the threshold to determine the

number of clusters, we will have 2 clusters. If we choose a threshold of 0.2, we will have as

many clusters as the number of assets. We develop a methodology, which is described below,

that does not require any threshold and it uses the full information in the dendrogram in

order to cluster the data.

We choose the threshold that maximizes the Silhouette coefficient. The Silhouette coef-

ficient is calculated as (MNC −MIC)/max{MIC,MNC} where MIC is the mean intra-

cluster distance and MNC is the mean nearest-cluster distance. The Silhouette coefficient

varies from -1 to 1 and it has an intuitive interpretation: when it is close to 1, it means

that the observations in the current cluster are “far” from its closest cluster; a value of -1

indicates that the observations in the current cluster are closer to a different cluster (i.e.

25For the datasets that contain less than 60 portfolios, we use an estimation window of 60 months. For
those datasets with more than 60 assets (76 Anomalies, 100 Size and B/M, and 100 Size and Operating
Prof), we use a longer estimation window of 120 months.
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they are assigned to the wrong cluster). In other words, the Silhouette coefficient measures

how well the data are clustered therefore we choose this methodology instead of an arbi-

trarily chosen threshold. Specifically, at each time t, we compute the dendrogram using

the sample-based correlation matrix, and we search for the threshold value that maximizes

the Silhouette coefficient. While this example is applied to hierarchical clustering, the same

intuition can be used for the other algorithms.

[Insert Figure 3 here]

Once the clusters have been formed, we need a methodology to build a portfolio from

the clustered data. We again use the dendrogram in Figure 3 to help us illustrate our

methodology. Let us assume that, following the clustering methodology described above,

we have two clusters: cluster 1 contains the assets 0, 1, and 4 while cluster 2 contains the

assets 2 and 3. Using the chosen allocation rule (i.e. IVol1), we form a portfolio within

each cluster using the sample-based estimates of the assets’ volatilities within each cluster.

We call these two portfolios CP1 (Cluster Portfolio 1) and CP2 (Cluster Portfolio 2). The

weights of each asset i belonging to cluster portfolio j are labelled as wCPji . We then move

to calculating a portfolio between clusters. We first calculate the covariance matrix between

the two cluster portfolios in our example, CP1 and CP2, by building a time-series of returns

for cluster portfolio CPj using the optimal weights (wCPji for each asset i in CPj). This

step gives us a time series of returns for each cluster portfolio which we use to calculate the

covariance matrix between clusters. We then use our chosen allocation rule and the between

clusters covariance matrix to form the between clusters portfolios. Each cluster portfolio

is assigned a weight w̄CPj. Last, we calculate the weight of each single asset taking into

account both the within cluster and between clusters portfolio weights. For any asset i that

belongs to cluster portfolio j, the optimal weight accounting for both within cluster and

between clusters allocations is

wi = w̄CPj · wCPji
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As we explained above, our methodology clusters the data using only historical informa-

tion (i.e. the sample-based covariance matrix), therefore it is fully out-of-sample.

5.2.2 An example of how our proposed clustering works

We provide an example of why our clustering methodology works when assets have equal

pairwise correlations and Sharpe ratios. Our goal is to compare the weights of the tangency

portfolio with the weights implied by our clustering methodology. Let us describe the setup

of our example. Let us assume that we have N assets that can be partitioned into two

clusters A and B. We can express their expected returns and variance-covariance matrix as

follows

µa = [µA, µB]′ (17)

Σa =

ΣA 0

0 ΣB

 (18)

where µi is the vector of expected returns of the assets in cluster i, and Σi is the variance-

covariance matrix of the assets in cluster i, for i ∈ {A,B}. The weights of the tangency

portfolio are as easily calculated as

wTAN ∝ Σ−1
a µa =

Σ−1
A 0

0 Σ−1
B

 ·
µA
µB

 =

Σ−1
A µA

Σ−1
B µB

 (19)

where the first equality follows from the property of the partitioned matrices. Under the

assumption that Sharpe ratios are the same and equal to k, and assets have equal pairwise

correlations, we can write for each i ∈ {A,B}

µi = kVi1i (20)

Σi = ViCiVi (21)
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where Vi is a diagonal matrix with the volatilities of assets in cluster i on its diagonal, 1i is

a N × 1 vector of ones, Ci is the correlation matrix of the assets in cluster i. Substituting

Equation (20) and Equation (21) in Equation (19), we can rewrite the weights of the tangency

portfolio as

wTAN ∝ k

V −1
A C−1

A 1A

V −1
B C−1

B 1B

 (22)

The next step is to derive an expression for the weights of the assets following our clustering

methodology and then compare them to the weights described in Equation (22). According

to our clustering methodology, the first step is to build “within clusters” portfolios, which

we label wIV olA and wIV olB in our example with two clusters

wIV olA ∝ V −1
A 1A =⇒ wIV olA = fAV

−1
A 1A (23)

wIV olB ∝ V −1
B 1B =⇒ wIV olB = fBV

−1
B 1B (24)

where fA and fB are two constants that simply regularize the weights of the portfolios such

that they sum up to one.

We now need to build the “between clusters” portfolio and, to do that, we need to

calculate the variance-covariance matrix between the two portfolios IV olA and IV olB, which

can be expressed as

ΣAB =

w′IV olA 0

0 w′IV olB

 · Σa ·

wIV olA 0

0 wIV olB


=

w′IV olA 0

0 w′IV olB

 ·
VACAVA 0

0 VBCBVB

 ·
wIV olA 0

0 wIV olB


=

f 2
A1′ACA1A 0

0 f 2
B1′BCB1B

 (25)
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The weights of the “between clusters” portfolios are

wAB =

 1
f2A1

′
ACA1A

1
f2B1′BCB1B

 (26)

In our example, wAB is a 2× 1 vector but in general it will be a vector equal to the number

of clusters. Combining the weights of the “between” and “within” clusters portfolios yields

the weights of each asset which, in our example, can be written as

wcluster =

 1
f2A1

′
ACA1A

⊗ wIV olA
1

f2B1′BCB1B
⊗ wIV olB

 (27)

where wcluster is a vector containing the weights of the N assets, which is formed by stacking

together the weights of the assets in clusters A and B. The intuition for the expression

describing wcluster is simple. We multiply the weights of each “within” cluster portfolio (i.e.,

wIV olA and wIV olB) by the weights assigned to them by the “between” cluster portfolio.

Since we have closed-form solutions for both the tangency portfolio and our clustering

methodology, we can now compare their weights and see when they deviate from each other.

To visualize the error, we use the following example. We use 5 assets, 3 of which are in the

first cluster (e.g., cluster A), and two are in the second cluster (e.g., cluster B). We assume

their Sharpe ratios are equal to 0.5 and their volatilities are defined by the following vector

[0.1, 0.12, 0.15, 0.05, 0.07], where the first 3 volatilities belong to the assets in cluster A and

the remaining 2 belong to the assets in cluster B. In the base case scenario, we assume that

the correlation between clusters (ρbtw) is zero (i.e., assets that belong to different clusters

are uncorrelated) and the correlation within clusters is 0.9 (ρwin). Using these assumptions

and the closed-form solutions from Equation (22) and Equation (27), we can calculate the

weights of each asset using the tangency portfolio and our clustering methodology. To

evaluate how much the two methodologies deviate from each other, we calculate the sum of

squared deviations between the two weights: SSD = |wTAN −wcluster|2, where | · |2 indicates
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the norm-2 operator.

In Figure 4, we analyze how changing the correlation between clusters ρbtw and within

clusters ρwin affects the sum of squared deviations SSD. In Panel A, we fix all parameters to

the base case scenario and we vary the correlation between clusters ρbtw. As expected, when

ρbtw is close to zero, the deviations between our clustering methodology and the tangency

portfolio are close to zero as well. In other words, our clustering methodology is equivalent to

the tangency portfolio. However, as ρbtw increases, then the sum of squared deviations SSD

increases, showing that our clustering methodology deviates from the tangency portfolio. In

Panel B, we repeat the exercise but this time we vary the correlation within clusters (ρwin).

Again, our results confirm our intuition. When ρwin is close to one, the deviations between

our clustering methodology and the tangency portfolio are close to zero, thus confirming that

when the within clusters correlation is high then our methodology converges to the tangency

portfolio. As ρwin decreases, the sum of squared deviations SSD increases, showing that

our clustering methodology is not effective because it deviates from the tangency portfolio.

Overall, our results show that if we are able to cluster together assets that are highly cor-

related and separate those that have low correlations, then we can use the inverse volatility

rule – which is subject to much less error than mean-variance – and still achieve an optimal

portfolio from a theoretical point of view.

[Insert Figure 4 here]

5.2.3 When is clustering expected to help?

Before presenting the empirical results on the performance of the various allocation rules

using machine learning, we discuss when investors should expect clustering to work best.

Intuitively, clustering the data should work well when there is a large number of clusters,

and each cluster contains assets that are similar to each other and can be grouped together.

We should not expect clustering to work well when the total number of assets is small or
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when the assets are either all different between each other or all the same. For example, if

all M assets are uncorrelated, then there are as many clusters as the number of assets, and

diversifying based on assets or clusters would be the same. Also, if all the M assets have a

high correlation (e.g. pairwise correlation of 0.99), then they all belong to the same (unique)

cluster and we, again, should not see benefits from clustering. It follows that clustering the

data should bring the most benefit when assets have dispersed correlations.

In order to evaluate this dispersion in the correlations of the assets, we build a proxy

as follows. For each rebalancing date t, the correlation matrix Ct is calculated using the

excess returns from t−m to t− 1, where m is the estimation window. We define SDt as the

standard deviation of the off-diagonal elements of Ct. We then average across all rebalancing

dates to obtain the average correlation dispersion:

Avg Correlation Dispersion =
1

T

T∑
t=1

SDt (28)

Our datasets include portfolios of equities, equities and bonds, and anomalies in the cross-

section of equity returns. Intuitively, we should expect that correlations between assets are

more dispersed for the portfolios of equities and bonds rather than the portfolios of equities

only. This is because, as shown in Fama and French (1993) and many other authors, the

risk-factors driving equity returns are different from those driving bonds returns.26 The aver-

age correlation dispersion measure defined in Equation (28) is consistent with this intuition.

Table 7 presents the average correlation dispersion for the datasets studied in this paper.

Consistent with the intuition that the average correlation dispersion should be higher for

datasets containing assets from various asset classes, the datasets with the highest average

correlation dispersion are the Multi-Assets datasets which contain a mix of equities, fixed in-

come, and commodities. The set of anomalies (76 Anomalies) also exhibits a high dispersion

(0.2831). In the set of 76 anomalies, there is a considerable variation: some anomalies are

26For example, Fama and French (1993) argue that equity returns are driven by a market factor, a size
factor, and a book-to-market factor while for bond returns there are two factors, the term premium and the
default premium.
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highly correlated between each other as they capture a similar feature (e.g. different ways of

designing a momentum anomaly) while some others are not correlated between each other.

This structure contributes to the 76 anomalies being the 4th highest dataset when ranked by

the average correlation dispersion. The remaining assets are all equity portfolios and they

exhibit low average correlation dispersion. Indeed, the 49 Industry portfolio (49 Industries)

is the next dataset with the highest dispersion in correlations and it achieves a dispersion

of 0.1752 which is less than half of the dispersion for the dataset of Equities, Fixed Income,

and Commodities. The 11 portfolios based on the q-factors of Hou et al. (2015, 2019) are

the dataset with the lowest average correlation dispersion (0.0508).

[Insert Table 7 here]

5.3 The benefits of clustering: empirical evidence

In this section, we present our empirical findings on the performance of the inverse volatility

rule (IVol1) when data are clustered using the methodology described above. Table 8 reports

the ratio between the Sharpe ratio of the IVol1 rule using clustered data and the Sharpe

ratio of the same rule using unclustered data. We sort the datasets in Table 8 based on their

average correlation dispersion in descending order.

Table 8 shows that clustering – especially hierarchical clustering – works well for the

set of 76 Anomalies. Using the hierarchical clustering with Single linkage, the Sharpe ratio

of IVol1 using clustered data is 11% higher than when IVol1 is applied to the unclustered

data. The set of 76 Anomalies is particularly suited to clustering because it possesses a

large number of assets and, at the same time, a high average dispersion in correlations. To

understand the importance of having a reasonably large number of assets, we look at the

two datasets of “Eq., Fixed Income, Comm.” and “Eq., F.I., Comm. and 10 S&P”. Both

datasets are diversified across equities, fixed income and commodities. The only difference

is that in the “Eq., F.I., Comm. and 10 S&P”, we add 10 S&P industries from Bloomberg
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to increase the total number of assets. The results on the benefits of clustering between

these two datasets are in stark contrast between each other. For “Eq., F.I., Comm. and

10 S&P”, the performance is considerably improved while for “Eq., Fixed Income, Comm.”,

clustering leads to a decrease in performance. Both datasets exhibit large average dispersion

in correlation and the main difference between the two lies in the number of assets: “Eq.,

Fixed Income, Comm.” has 8 assets in total (2 equities, 2 fixed income, and 4 commodities

indices) while “Eq., F.I., Comm. and 10 S&P” contains 18 assets (12 equities, 2 fixed income,

and 4 commodities indices).

[Insert Table 8 here]

Consistent with our description of Avg Correlation Dispersion defined in Equation (28),

Table 8 shows that, as the Avg Correlation Dispersion decreases, the benefits of clustering

are mostly marginal or disappear. Overall, our findings show that clustering improves the

performance of risk-based allocation rules in terms of the Sharpe ratio when there is enough

variation in the correlation between the assets (i.e. when the Avg Correlation Dispersion is

high).

6 Conclusion

In this paper, we first develop a statistical test to evaluate whether applying inverse volatility

rules is equivalent to using a tangency portfolio (i.e., optimal mean-variance portfolio) in

the presence of estimation error for both expected returns and variance-covariance matrix.

Specifically, we develop a statistical test for the null hypothesis that the inverse volatility

portfolios are equivalent to the tangency portfolio and then apply it to many datasets. Our

results show that in the majority of the cases, there is no statistical difference between

the optimal mean-variance portfolio and the inverse volatility portfolios, thus providing an

explanation for why inverse volatility rules perform well empirically.
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Furthermore, the statistical test developed here can be used to guide our decision of

whether or not to use inverse volatility rules on a given dataset: if historical returns show

that inverse volatility rules are equivalent to the tangency portfolio, they are likely to perform

well out-of-sample, assuming that the distribution of returns remains the same. We confirm

this intuition empirically and, consistent with previous literature, our results show that in-

verse volatility rules outperform both the näıve diversification (1/N) rule and mean-variance

optimized portfolios.

Finally, we propose a clustering methodology that leverages the properties of the inverse

volatility portfolio to improve the benefits of diversification of such portfolio and ultimately

achieve a higher portfolio’s performance. Our clustering methodology is guided by the fact

that the weights of the inverse volatility portfolio are exactly equal to the weights of the

tangency portfolio when assets have the same Sharpe ratios and equal pairwise correlations.

Our clustering methodology groups the assets such that the assets within each cluster are as

close as possible to this condition. We show that in many datasets considered in this study,

our clustering methodology improves performance relative to the “unclustered” data.
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Figures

Figure 1. The effect of estimation error. This figure depicts the performance of
three different allocation rules under the effect of estimation error. The three allocation
rules plotted are: the optimal mean-variance tangency portfolio (TAN), the global minimum
variance portfolio (GMV), and the inverse volatility portfolio (IVol). The y-axis displays the
average portfolio excess return µP while the x-axis shows its standard deviation σP . In each
panel, the green solid line shows the efficient frontier using the true mean excess return µ and
variance-covariance matrix Σ. The blue triangles show the performance in terms of expected
excess returns (µP ) and volatility (σP ) of 5,000 simulated tangency (TAN) portfolios when

investors estimate the mean excess return and variance covariance matrix, µ̂ and Σ̂, using
an estimation window of 60 months. The yellow diamonds show the performance for the
global minimum variance (GMV) portfolios, and the red squares show the performance for
the inverse volatility (IVol) portfolios. In each panel, the legend reports the name of the
series and the median Sharpe ratio from the 5,000 simulations. Panel A and Panel B show
the simulations when there are 5 and 15 uncorrelated assets, respectively. In all panels,
assets are assumed to have the same Sharpe ratios.
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Figure 2. Visualize the J test. This figure shows the p-value from the J-test described
in Section 3.1, which tests the null hypothesis that the portfolio IVolγ is equivalent to the
mean-variance portfolio for a given γ. The IVolγ rule is described in Section 3.3.
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Figure 3. A dendrogram. This figure shows how hierarchical clustering groups together
various assets to form clusters.
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Figure 4. Clustering. The two figures below show how much our clustering methodology
differs from the optimal tangency portfolio for various levels of correlations. We assume that
there are 5 assets, 3 of which are in the first cluster (e.g., cluster A) and two are in the second
cluster (e.g., cluster B). We assume their Sharpe ratios are equal to 0.5 and their volatilities
are defined by the following vector [0.1, 0.12, 0.15, 0.05, 0.07], where the first 3 volatilities
belong to the assets in cluster A and the remaining 2 belong to the assets in cluster B. In
the base case scenario, we assume that the correlation between clusters (ρbtw) is zero (i.e.,
assets that belong to different clusters are uncorrelated) and the correlation within clusters
is 0.9 (ρwin). Using these assumptions and the closed-form solutions from Equation (22)
and Equation (27), we calculate the weights of each asset using the tangency portfolio and
our clustering methodology and the sum of squared deviations as SSD = |wTAN −wcluster|2,
where | · |2 indicates the norm-2 operator. In Panel A, we fix all parameters to the base
case scenario and we vary the correlation between clusters ρbtw. In Panel B, we repeat the
exercise but this time we vary the correlation within clusters (ρwin).
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Tables

Table 1. The datasets are listed below. For a detailed description and discussion of the
datasets, please see Section 3.2.

Datasets Dates

Equity, Fixed Income, Commodities 1979 - 2019

Equity, Fixed Income, Commodities and 10 S&P Industries 1994 - 2019

Equity and Fixed Income 1979 - 2019

76 Anomalies 1981 - 2019

Individual Stocks 1967 - 2019

10 Industries 1960 - 2019

17 Industries 1960 - 2019

30 Industries 1960 - 2019

49 Industries 1960 - 2019

25 Size and B/M 1960 - 2019

25 Size and Operating Profitability 1963 - 2019

11 q-Portfolios 1971 - 2019

12 FF5-Portfolios 1971 - 2019

25 Europe Size and Book-to-market 1990 - 2019

25 Japan Size and Book-to-market 1990 - 2019

25 Asia Size and Book-to-market 1990 - 2019
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Table 2. J-test and in-sample Sharpe ratios. For a given level of γ, this table shows
the in-sample Sharpe ratios of the IVolγ portfolio and the p-value from the J-test of the
null hypothesis that the portfolio IVolγ is equivalent to the mean-variance portfolio. The
portfolio rule IVolγ and the J-test are described in Section 3.

Values of γ

1/N (γ = 0) 1 2 3 4 5 6

M
u

lt
i-

A
ss

et

Eq., Fixed Income, Comm. J p-val 0.000 0.000 0.008 0.022 0.002 0.000 0.001
SR 0.232 0.277 0.318 0.329 0.314 0.295 0.281

Eq., F.I., Comm. and 10 S&P J p-val 0.001 0.003 0.070 0.274 0.134 0.052 0.044
SR 0.248 0.281 0.329 0.376 0.374 0.329 0.289

Equity, Fixed Income J p-val 0.017 0.090 0.060 0.004 0.000 0.000 0.000
SR 0.319 0.334 0.332 0.317 0.299 0.285 0.276

E
q
u

it
y

O
n

ly

76 Anomalies J p-val 0.000 0.000 0.000 0.019 0.325 0.834 0.986
SR 0.350 0.365 0.367 0.361 0.352 0.343 0.335

Individual Stocks J p-val 0.475 1.000 0.989 0.986 1.000 0.742 0.992
SR 0.187 0.192 0.196 0.200 0.202 0.202 0.200

10 Industries J p-val 0.045 0.075 0.136 0.237 0.371 0.512 0.632
SR 0.232 0.237 0.242 0.246 0.250 0.253 0.256

17 Industries J p-val 0.018 0.021 0.039 0.090 0.205 0.384 0.579
SR 0.211 0.218 0.225 0.232 0.239 0.245 0.251

30 Industries J p-val 0.087 0.098 0.162 0.313 0.546 0.770 0.905
SR 0.211 0.217 0.223 0.229 0.235 0.241 0.247

49 Industries J p-val 0.005 0.004 0.013 0.081 0.348 0.734 0.940
SR 0.205 0.212 0.218 0.225 0.232 0.239 0.246

100 Size and B/M J p-val 0.000 0.000 0.001 0.289 0.962 1.000 1.000
SR 0.215 0.221 0.225 0.228 0.231 0.233 0.235

100 Size and Operating Prof J p-val 0.000 0.000 0.007 0.569 0.994 1.000 1.000
SR 0.216 0.220 0.223 0.225 0.227 0.229 0.230

25 Size and B/M J p-val 0.000 0.000 0.000 0.000 0.010 0.136 0.463
SR 0.216 0.221 0.225 0.229 0.231 0.233 0.234

25 Size and Operating Prof J p-val 0.000 0.000 0.000 0.004 0.067 0.315 0.652
SR 0.213 0.217 0.220 0.222 0.224 0.226 0.227

11 q-Portfolios J p-val 0.000 0.000 0.000 0.000 0.000 0.005 1.000
SR 0.167 0.172 0.178 0.183 0.188 0.192 0.195

12 FF5-Portfolios J p-val 0.000 0.000 0.000 0.000 0.001 0.015 0.076
SR 0.207 0.209 0.211 0.213 0.214 0.216 0.217

25 Europe Size and B/M J p-val 0.000 0.000 0.008 0.146 0.578 0.894 0.982
SR 0.147 0.148 0.149 0.150 0.151 0.152 0.153

25 Japan Size and B/M J p-val 0.080 0.099 0.240 0.544 0.832 0.960 0.993
SR 0.063 0.063 0.063 0.064 0.064 0.064 0.065

25 Asia Size and B/M J p-val 0.000 0.000 0.005 0.161 0.630 0.915 0.986
SR 0.132 0.133 0.134 0.135 0.136 0.137 0.138
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Table 3. Comparison of Sharpe ratios and test against 1/N. This table presents
the monthly Sharpe ratios of various allocation rules across different datasets. The column
“Dataset” contains the datasets, which are described in Table 1. The various allocation
rules are: (1) the “1/N” rule (näıve diversification); (2) the tangency portfolio from Mean-
Variance Optimization (MVO); (3) the 1-norm-constrained portfolio (DGNU1) developed in
DeMiguel et al. (2009a); and (4) the IVolγ rule for γ ∈ {1, 2, 3, 4, 5}. In parentheses, we
report the p-value of the difference between the Sharpe ratio of each allocation rule from the
1/N rule, which is computed using the test described in Internet Appendix B.

Dataset 1/N MVO DGNU1 IVol1 IVol2 IVol3 IVol4 IVol5

Eq., Fixed Income 0.235 0.342 0.343 0.285 0.330 0.352 0.350 0.337
Comm. (0.030) (0.003) (0.000) (0.000) (0.002) (0.017) (0.066)

Eq., Fixed Income, 0.189 0.205 0.296 0.222 0.258 0.294 0.317 0.320
Comm. and 10 S&P (0.826) (0.076) (0.001) (0.002) (0.005) (0.017) (0.051)

Eq., Fixed Income 0.321 0.257 0.350 0.339 0.341 0.331 0.318 0.307
(0.053) (0.243) (0.138) (0.414) (0.768) (0.946) (0.761)

76 Anomalies 0.296 0.538 0.566 0.310 0.313 0.307 0.298 0.286
(0.000) (0.000) (0.090) (0.258) (0.567) (0.958) (0.692)

Individual Stocks 0.203 0.037 0.180 0.206 0.209 0.211 0.214 0.214
(0.003) (0.552) (0.553) (0.502) (0.491) (0.520) (0.582)

10 Industries 0.229 0.088 0.271 0.237 0.244 0.250 0.254 0.256
(0.003) (0.108) (0.000) (0.001) (0.002) (0.004) (0.010)

17 Industries 0.209 0.042 0.256 0.218 0.227 0.234 0.240 0.245
(0.005) (0.111) (0.000) (0.000) (0.000) (0.001) (0.001)

30 Industries 0.211 0.073 0.266 0.220 0.229 0.236 0.242 0.248
(0.001) (0.106) (0.000) (0.000) (0.000) (0.000) (0.000)

49 Industries 0.203 0.108 0.243 0.212 0.220 0.228 0.234 0.240
(0.089) (0.252) (0.000) (0.000) (0.000) (0.000) (0.000)

25 Size and B/M 0.217 -0.002 0.300 0.224 0.230 0.234 0.237 0.239
(0.000) (0.004) (0.000) (0.000) (0.001) (0.001) (0.003)

25 Size and Operating Prof 0.199 0.057 0.308 0.205 0.211 0.215 0.219 0.223
(0.025) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

11 q-Portfolios 0.163 0.293 0.306 0.168 0.174 0.178 0.182 0.185
(0.182) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

12 FF5-Portfolios 0.213 0.157 0.291 0.216 0.220 0.223 0.225 0.228
(0.431) (0.002) (0.001) (0.001) (0.001) (0.001) (0.001)

25 Europe Size and B/M 0.157 -0.046 0.281 0.165 0.172 0.179 0.185 0.190
(0.005) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

25 Japan Size and B/M 0.085 0.055 0.119 0.087 0.089 0.091 0.093 0.094
(0.721) (0.409) (0.111) (0.118) (0.128) (0.141) (0.157)

25 Asia Size and B/M 0.118 0.019 0.196 0.120 0.121 0.123 0.125 0.127
(0.238) (0.019) (0.175) (0.141) (0.113) (0.090) (0.073)
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Table 4. Comparison of Sharpe ratios and test against DGNU1. This table presents
the monthly Sharpe ratios of various allocation rules across different datasets. The column
“Dataset” contains the datasets, which are described in Table 1. The various allocation
rules are: (1) the “1/N” rule (näıve diversification); (2) the tangency portfolio from Mean-
Variance Optimization (MVO); (3) the 1-norm-constrained portfolio (DGNU1) developed in
DeMiguel et al. (2009a); and (4) the IVolγ rule for γ ∈ {1, 2, 3, 4, 5}. In parentheses, we
report the p-value of the difference between the Sharpe ratio of each allocation rule from the
DGNU1 portfolio, which is computed using the test described in Internet Appendix B.

Dataset DGNU1 1/N MVO IVol1 IVol2 IVol3 IVol4 IVol5

Eq., Fixed Income 0.343 0.235 0.342 0.285 0.330 0.352 0.350 0.337
Comm. (0.003) (0.977) (0.040) (0.488) (0.609) (0.774) (0.846)
Eq., Fixed Income, 0.296 0.189 0.205 0.222 0.258 0.294 0.317 0.320
Comm. and 10 S&P (0.076) (0.140) (0.171) (0.423) (0.951) (0.589) (0.573)
Eq., Fixed Income 0.350 0.321 0.257 0.339 0.341 0.331 0.318 0.307

(0.243) (0.004) (0.465) (0.362) (0.200) (0.126) (0.092)
76 Anomalies 0.566 0.296 0.538 0.310 0.313 0.307 0.298 0.286

(0.000) (0.542) (0.000) (0.000) (0.000) (0.000) (0.000)
Individual Stocks 0.180 0.203 0.037 0.206 0.209 0.211 0.214 0.214

(0.552) (0.007) (0.494) (0.423) (0.351) (0.295) (0.265)
10 Industries 0.271 0.229 0.088 0.237 0.244 0.250 0.254 0.256

(0.108) (0.000) (0.174) (0.253) (0.334) (0.408) (0.461)
17 Industries 0.256 0.209 0.042 0.218 0.227 0.234 0.240 0.245

(0.111) (0.000) (0.185) (0.283) (0.396) (0.515) (0.626)
30 Industries 0.266 0.211 0.073 0.220 0.229 0.236 0.242 0.248

(0.106) (0.000) (0.165) (0.239) (0.327) (0.425) (0.526)
49 Industries 0.243 0.203 0.108 0.212 0.220 0.228 0.234 0.240

(0.252) (0.007) (0.363) (0.486) (0.622) (0.767) (0.914)
25 Size and B/M 0.300 0.217 -0.002 0.224 0.230 0.234 0.237 0.239

(0.004) (0.000) (0.007) (0.010) (0.012) (0.013) (0.013)
25 Size and Operating Prof 0.308 0.199 0.057 0.205 0.211 0.215 0.219 0.223

(0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001)
11 q-Portfolios 0.306 0.163 0.293 0.168 0.174 0.178 0.182 0.185

(0.000) (0.889) (0.000) (0.000) (0.000) (0.000) (0.000)
12 FF5-Portfolios 0.291 0.213 0.157 0.216 0.220 0.223 0.225 0.228

(0.002) (0.052) (0.002) (0.002) (0.002) (0.003) (0.003)
25 Europe Size and B/M 0.281 0.157 -0.046 0.165 0.172 0.179 0.185 0.190

(0.000) (0.000) (0.001) (0.001) (0.002) (0.002) (0.003)
25 Japan Size and B/M 0.119 0.085 0.055 0.087 0.089 0.091 0.093 0.094

(0.409) (0.395) (0.431) (0.451) (0.470) (0.486) (0.499)
25 Asia Size and B/M 0.196 0.118 0.019 0.120 0.121 0.123 0.125 0.127

(0.019) (0.041) (0.018) (0.018) (0.018) (0.019) (0.020)
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Table 5. Comparison of Certainty Equivalent Returns. This table presents the
monthly Certainty Equivalent Returns (CEQ) of various allocation rules across different
datasets. The column “Dataset” contains the datasets, which are described in Table 1. The
various allocation rules are: (1) the “1/N” rule (näıve diversification); (2) the tangency
portfolio from Mean-Variance Optimization (MVO); (3) the 1-norm-constrained portfolio
(DGNU1) developed in DeMiguel et al. (2009a); and (4) the IVolγ rule for γ ∈ {1, 2, 3, 4, 5}.
For ease of reading, we multiply the CEQs by 100. In parentheses, we report the p-value of
the difference between the CEQ of each allocation rule from the 1/N rule, which is computed
using the test described in DeMiguel, Garlappi, and Uppal (2009b).

Dataset 1/N MVO DGNU1 IVol1 IVol2 IVol3 IVol4

Eq., Fixed Income 0.433 -1.303 0.536 0.516 0.555 0.555 0.536
Comm. (0.002) (0.203) (0.030) (0.101) (0.239) (0.400)

Eq., Fixed Income 0.344 -3.027 0.442 0.439 0.509 0.534 0.515
Comm. and 10 S&P (0.000) (0.542) (0.031) (0.077) (0.181) (0.350)

Eq., Fixed Income, 0.667 0.472 0.602 0.664 0.632 0.593 0.562
(0.053) (0.273) (0.935) (0.596) (0.391) (0.287)

76 Anomalies 0.358 0.420 0.344 0.338 0.316 0.294 0.275
(0.545) (0.835) (0.155) (0.062) (0.027) (0.016)

Individual Stocks 0.406 -663.637 0.324 0.426 0.440 0.447 0.445
(0.000) (0.624) (0.460) (0.510) (0.587) (0.687)

10 Industries 0.519 -5.758 0.637 0.553 0.578 0.595 0.605
(0.000) (0.248) (0.006) (0.011) (0.024) (0.047)

17 Industries 0.432 -1466.417 0.591 0.482 0.522 0.552 0.573
(0.000) (0.202) (0.000) (0.001) (0.002) (0.005)

30 Industries 0.441 -841.488 0.623 0.490 0.530 0.561 0.585
(0.000) (0.200) (0.001) (0.002) (0.003) (0.005)

49 Industries 0.396 -3.421 0.555 0.449 0.491 0.525 0.552
(0.000) (0.314) (0.000) (0.000) (0.001) (0.002)

25 Size and B/M 0.457 -12.619 0.758 0.499 0.529 0.549 0.562
(0.000) (0.028) (0.000) (0.001) (0.003) (0.007)

25 Size and Operating Prof 0.360 -34.509 0.771 0.401 0.435 0.462 0.483
(0.000) (0.004) (0.000) (0.000) (0.000) (0.000)

11 q-Portfolios 0.048 -204.184 0.876 0.101 0.148 0.188 0.220
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

12 FF5-Portfolios 0.448 -81.325 0.743 0.467 0.484 0.498 0.511
(0.000) (0.007) (0.003) (0.003) (0.003) (0.003)

25 Europe Size and B/M 0.166 -260.064 0.728 0.212 0.253 0.289 0.321
(0.000) (0.001) (0.000) (0.000) (0.000) (0.000)

25 Japan Size and B/M -0.259 -422.250 0.023 -0.229 -0.204 -0.183 -0.165
(0.000) (0.192) (0.006) (0.007) (0.009) (0.012)

25 Asia Size and B/M -0.241 -1135.74 0.330 -0.218 -0.195 -0.173 -0.152
(0.000) (0.006) (0.010) (0.008) (0.006) (0.004)
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Table 6. Comparison of Turnovers. This table presents the ratio of the monthly turnover
of each allocation rule with respect to the 1/N rule (Panel A) as well as the return-gain with
respect to the 1/N strategy in terms of the Sharpe ratio (Panel B), which is the extra return
the 1/N rule needs to provide in order that the Sharpe ratio of the 1/N strategy equals
that of each allocation rule in the presence of transactions costs as described in Internet
Appendix E. The column “Datasets” contains the datasets, which are described in Table 1.
The various allocation rules are: (1) the “1/N” rule (näıve diversification); (2) the tangency
portfolio from Mean-Variance Optimization (MVO); (3) the 1-norm-constrained portfolio
(DGNU1) developed in DeMiguel et al. (2009a); and (4) the IVolγ rule for γ ∈ {1, 2, 3, 4, 5}.

Dataset 1/N MVO DGNU1 IVol1 IVol2 IVol3 IVol4 IVol5

Panel A: Turnover ratios
Eq., Fixed Income Comm. 1.00 2.50 0.82 0.96 0.88 0.77 0.65 0.54
Eq., F.I. , Comm. and 10 S&P 1.00 3.53 1.22 0.96 0.92 0.85 0.77 0.67
Eq., Fixed Income 1.00 1.00 0.81 0.92 0.78 0.63 0.49 0.38
76 Anomalies 1.00 2.42 1.50 0.93 0.86 0.81 0.76 0.71
Individual Stocks 1.00 246.92 2.46 0.95 0.90 0.86 0.82 0.78
10 Industries 1.00 29.11 2.10 0.98 0.96 0.94 0.92 0.90
17 Industries 1.00 220.87 2.98 0.97 0.94 0.91 0.89 0.86
30 Industries 1.00 1304.24 3.87 0.95 0.92 0.89 0.87 0.84
49 Industries 1.00 34.38 4.30 0.95 0.91 0.88 0.86 0.83
25 Size and B/M 1.00 1811.94 6.87 0.98 0.96 0.94 0.92 0.90
25 Size and Operating Prof 1.00 380.05 8.22 0.99 0.97 0.96 0.94 0.93
11 q-Portfolios 1.00 355.49 6.40 1.00 1.00 0.99 0.99 0.98
12 FF5-Portfolios 1.00 1740.97 5.92 0.96 0.91 0.87 0.83 0.79
25 Europe Size and B/M 1.00 8135.87 7.96 0.98 0.96 0.94 0.92 0.91
25 Japan Size and B/M 1.00 2068.50 8.10 0.97 0.95 0.93 0.91 0.89
25 Asia Size and B/M 1.00 32862.23 6.24 0.99 0.98 0.97 0.96 0.95

Panel B: Annualized Return-Gain
Eq., Fixed Income Comm. 0.00% 3.28% 3.31% 1.50% 2.89% 3.59% 3.53% 3.12%
Eq., F.I. , Comm. and 10 S&P 0.00% 0.58% 4.01% 1.21% 2.57% 3.91% 4.80% 4.91%
Eq., Fixed Income 0.00% -1.96% 0.94% 0.58% 0.63% 0.31% -0.09% -0.43%
76 Anomalies 0.00% 4.02% 4.51% 0.23% 0.27% 0.18% 0.02% -0.18%
Individual Stocks 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
10 Industries 0.00% -4.87% 2.19% 0.43% 0.78% 1.06% 1.28% 1.43%
17 Industries 0.00% -6.02% 2.66% 0.53% 1.00% 1.40% 1.73% 1.99%
30 Industries 0.00% -13.18% 3.18% 0.52% 0.99% 1.41% 1.79% 2.11%
49 Industries 0.00% -3.71% 2.43% 0.54% 1.02% 1.46% 1.86% 2.23%
25 Size and B/M 0.00% -9.27% 5.32% 0.44% 0.78% 1.04% 1.23% 1.36%
25 Size and Operating Prof 0.00% -9.22% 7.08% 0.40% 0.75% 1.05% 1.31% 1.52%
11 q-Portfolios 0.00% 20.63% 11.23% 0.42% 0.81% 1.16% 1.45% 1.67%
12 FF5-Portfolios 0.00% -8.93% 4.47% 0.20% 0.39% 0.56% 0.71% 0.85%
25 Europe Size and B/M 0.00% -7.58% 7.58% 0.46% 0.89% 1.28% 1.63% 1.94%
25 Japan Size and B/M 0.00% 6.35% 2.25% 0.16% 0.31% 0.43% 0.54% 0.63%

(Continued on next page)
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Dataset 1/N MVO DGNU1 IVol1 IVol2 IVol3 IVol4 IVol5

25 Asia Size and B/M 0.00% -3.87% 6.02% 0.11% 0.24% 0.37% 0.50% 0.65%
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Table 7. Dispersion in assets’ correlations. For each dataset, we report the average
dispersion in correlations, which is described in details in Section 5. For each rebalancing
date t, the correlation matrix Ct is calculated using the excess returns from t−m to t− 1,
where m is the estimation window (60 months or 120 months when a dataset has more than
60 assets). We define SDt as the standard deviation of the off-diagonal elements of Ct. We
then average across all rebalancing dates to obtain the average correlation dispersion: Avg
Correlation Dispersion = 1

T

∑T
t=1 SDt.

Datasets Avg Correlation Dispersion

M
u
lt

i-
A

ss
et

s

Equity, Fixed Income 0.4370

Eq., F.I., Comm. and 10 S&P 0.3658

Eq., Fixed Income, Comm. 0.3612

E
q
u
it

y
O

n
ly

76 Anomalies 0.2831

49 Industries 0.1752

10 Industries 0.1638

17 Industries 0.1612

30 Industries 0.1611

Individual Stocks 0.1442

25 Size and B/M 0.0966

25 Japan Size and B/M 0.0887

25 Size and Operating Prof 0.0802

25 Asia Size and B/M 0.0756

25 Europe Size and B/M 0.0729

12 FF5-Portfolios 0.0577

11 q-Portfolios 0.0508
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Table 8. Clustering and Sharpe Ratios. This table shows the improvement in the
Sharpe ratios of the inverse volatility rule when assets are grouped into heterogeneous clusters
using various clustering algorithms. We report the proportion of the Sharpe ratio of IVol1
when assets are clustered with respect to the Sharpe ratio of the same rule with unclustered
data. The clustering methodology is described in details in Section 5. The column “HC
Single” clusters the data using hierarchical clustering with the Single linkage, the column
DBSCAN uses the clustering algorithm “Density-Based Spatial Clustering of Applications
with Noise (DBSCAN)”, the column “Kmeans” uses the K-means algorithm, and the column
“HC Ward” uses the hierarchical clustering with the Ward linkage. In parentheses, we report
the p-value – computed using the test described in Internet Appendix B – of the difference
between the Sharpe ratio when using clustering and the Sharpe ratio without clustering.

HC Single DBSCAN Kmeans HC Ward

Eq., Fixed Income, Comm. 0.92 0.90 0.93 0.87
(0.33) (0.00) (0.06) (0.00)

Eq., F.I., Comm. and 10 S&P 1.15 1.24 1.14 1.03
(0.35) (0.00) (0.17) (0.00)

Equity, Fixed Income 0.99 0.99 0.99 0.99
(0.13) (0.00) (0.13) (0.00)

76 Anomalies 1.11 1.06 0.98 1.24
(0.57) (0.00) (0.60) (0.00)

10 Industries 1.05 1.03 1.04 1.03
(0.22) (0.00) (0.60) (0.00)

17 Industries 1.10 1.09 1.06 1.06
(0.07) (0.00) (0.09) (0.00)

30 Industries 1.18 1.08 1.08 1.05
(0.00) (0.00) (0.25) (0.00)

49 Industries 1.14 0.81 1.04 1.05
(0.08) (0.00) (0.11) (0.00)

Individual Stocks 0.98 1.02 1.00 1.04
(0.87) (0.00) (0.52) (0.00)

25 Size and B/M 0.97 1.00 1.02 0.98
(0.50) (0.00) (0.98) (0.00)

25 Size and Operating Prof 0.98 1.02 1.02 0.98
(0.72) (0.00) (0.58) (0.00)

11 q-Portfolios 1.00 0.88 0.88 1.00
(0.94) (0.00) (0.00) (0.00)

12 FF5-Portfolios 1.00 0.97 0.95 1.01
(0.99) (0.00) (0.39) (0.00)

25 Europe Size and B/M 0.85 0.96 1.00 0.98
(0.10) (0.00) (0.50) (0.00)

25 Japan Size and B/M 0.89 0.84 0.92 0.92
(0.50) (0.00) (0.27) (0.00)

25 Asia Size and B/M 0.94 1.07 1.02 0.97
(0.60) (0.00) (0.39) (0.00)
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Internet Appendix A Proof for statistical test for equal-

ity of between IVolγ and mean-

variance portfolio

In this section, we provide the proofs of Proposition 1 and Proposition 2.
We begin by proving Proposition 1.

Proof. We begin with the proof of the necessary condition (i.e., wTAN = wIV olγ implies that
Σ−1µ×D−γ1N = 0N). From Equation (11) and (12), for wTAN = wIV olγ it needs to be that

Σ−1µ

1′NΣ−1µ
=

D−γ1N
1′ND

−γ1N
(A.1)

which we can re-write as

Σ−1µ =
1′NΣ−1µ

1′ND
−γ1N

D−γ1N (A.2)

The above equation implies that the vectors Σ−1µ and D−γ1N are proportional to each other
(i.e., they are parallel). Therefore, their cross product satisfies the condition Σ−1µ×D−γ1N =
0N . This completes the proof of the necessary condition.

As for the sufficient condition, Σ−1µ×D−γ1N = 0N implies that there exists a constant
k ∈ R such that

Σ−1µ = kD−γ1N (A.3)

Given the fact that wTAN = Σ−1µ
1′NΣ−1µ

, it follows that

wTAN =
Σ−1µ

1′NΣ−1µ
=

kD−γ1N
1′NkD

−γ1N
=

D−γ1N
1′ND

−γ1N
= wIV olγ (A.4)

where the second equality follows from using Equation (A.3). This completes the proof of
sufficient condition.

Next, we prove Proposition 2

Proof. Proposition 1 implies that for wMVO to be equivalent to wIV olγ, the following condition
must hold

DγΣ−1µ× 1N = 0N . (A.5)

It is known that the above condition is equivalent to

P ′DγΣ−1µ = 0N−1 (A.6)

where P is an N(N − 1) orthonormal matrix with its columns orthogonal to 1N .
Let c = DγΣ−1µ. In order to test this necessary and sufficient condition, we can look at

the sample counterpart of c, defined as

ĉ = D̂γΣ̂−1µ̂, (A.7)
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where µ̂ = 1
T

∑T
t=1 Rt, Σ̂ = 1

T

∑T
t=1(Rt − µ̂)(Rt − µ̂)′, D̂γ = Diag(Σ̂)

γ
2 , and Rt is a vector of

returns.
To derive a statistical test of the necessary and sufficient condition, we first find the

limiting distribution of ĉ. Under the assumption that Rt is stationary and ergodic with
finite fourth moments, it is known that the limiting distribution is

√
T (ĉ− c) d→ N(0N , V (ĉ)), (A.8)

and we can construct a test of the null hypothesis H0 : P ′c = 0N−1 using

J = T (P ′ĉ)′(P ′V̂ (ĉ)P )−1(P ′ĉ)
d→ χ2

N−1, (A.9)

where V̂ (ĉ) is a consistent estimator of V (ĉ).
The last step is to derive an explicit expression of V (ĉ). Since µ̂ = 1

T

∑T
t=1Rt and

Σ̂ = 1
T

∑T
t=1(Rt− µ̂)(Rt− µ̂)′ are simply GMM estimators of µ and Σ in an exactly identified

system, the asymptotic distribution of θ̂ = [µ̂′, vec(Σ̂)′]′ is given by

√
T (θ̂ − θ) d→ N(0N+N2 , S0), (A.10)

where

S0 =
∞∑

j=−∞

E[gtg
′
t+j], (A.11)

and

gt =

[
Rt − µ

vec((Rt − µ)(Rt − µ)′ − Σ)

]
. (A.12)

Let us denote c1 ≡ Σ−1µ and ĉ1 = Σ̂−1µ̂. Given that

∂c1

∂µ
= Σ−1, (A.13)

∂c1

∂vec(Σ)′
= −µ′Σ−1 ⊗ Σ−1, (A.14)

and using the delta method, we can show that

√
T (ĉ1 − c1)

d→ N

(
0N ,

∞∑
j=−∞

E[h1th
′
1,t+j]

)
, (A.15)

where
h1t = Σ−1(Rt − µ)− µ′Σ−1(Rt − µ)Σ−1(Rt − µ) + Σ−1µ. (A.16)

Denote c2 ≡ [σ2
1, . . . , σ

2
N ]′ and ĉ2 = [σ̂2

1, . . . , σ̂
2
N ]′. The limiting distribution of ĉ2 is

√
T (ĉ2 − c2)

d→ N

(
0N ,

∞∑
j=−∞

E[h2th
′
2,t+j]

)
, (A.17)
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where
h2t = Diag((Rt − µ)(Rt − µ)′)− c2. (A.18)

Since ci = c1i

√
cγ2i, we can use the delta method to obtain

√
T (ĉ− c) d→ N

(
0N ,

∞∑
j=−∞

E[qtq
′
t+j]

)
, (A.19)

where the i-th element of qt is given by

qit = σγi e
′
ih1t + γ

c1ie
′
iD

2(γ−1)h2t

2σγi
, (A.20)

and ei is an N -vector with its i-th element equals to one and zero otherwise. More compactly,
we can write

qt = Dγh1t +
γ

2
Diag(c1)D−γD2(γ−1)h2t. (A.21)

Under the i.i.d. assumption on Rt, we have

V (ĉ) = E[qtq
′
t]. (A.22)

In addition, when Rt is i.i.d. normal, we have

E[h1th
′
1t] = Σ−1 + (µ′Σ−1µ)Σ−1 + 2Σ−1µµ′Σ−1 − 2Σ−1µµ′Σ−1 + Σ−1µµ′Σ−1

= (1 + µ′Σ−1µ)Σ−1 + Σ−1µµ′Σ−1, (A.23)

E[h2th
′
2t] = C, (A.24)

E[h1th
′
2t] = −E[µ′Σ−1(Rt − µ)Σ−1(Rt − µ)h′2t] = −G+ Σ−1µc′2, (A.25)

= −2Diag(µ), (A.26)

where Cij = 2σ2
ij and Gij = e′iΣ

−1µσ2
j + 2e′iejµj. It follows that an explicit expression for

V (ĉ) is

V̂ (ĉ) = E[q̂tq̂
′
t] = D̂γE[ĥ1tĥ

′
1t]D̂

γ − 2γDiag(µ̂)D̂2(γ−1)Diag(ĉ1)+

+
1

4
γ2Diag(ĉ1)D̂γ−2 Ĉ D̂γ−2Diag(ĉ1) (A.27)

A consistent estimator of V (ĉ) can simply be calculated by using the sample counterparts

V (ĉ) = E[qtq
′
t] = DγE[h1th

′
1t]D

γ − 2γDiag(µ)D2(γ−1)Diag(c1)+

+
1

4
γ2Diag(c1)Dγ−2C Dγ−2Diag(c1) (A.28)
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Internet Appendix B Testing the equality of Sharpe

ratios

In this section, we describe the test that we use to evaluate whether two time-series of
returns have statistically different Sharpe ratios. This is an extension of the test developed
by Jobson and Korkie (1981) as corrected by Memmel (2003). While Memmel (2003)’s test
requires returns to be normal, the test described here is more general as it does not require
the data to be normal.27

Let rt = [r1t, r2t]
′ ∼ N(µ,Σ) be the excess return of two assets at time t, where µ =

[µ1, µ2]′ and

Σ =

[
σ2

1 σ12

σ12 σ2
2

]
Let SRi = µi

σi
be the Sharpe ratio of an asset i. We denote the sample counterparts of the

true variable x with x̂ (e.g. µ̂1 is the sample mean for asset 1).

First, we derive the distribution of δ̂ = ŜR1− ŜR2. We assume that rt is stationary with
finite fourth moments. Let ϕ̂ = [µ̂1, µ̂2, σ̂1, σ̂2]′. Since ϕ̂ is the GMM estimator of ϕ with
moment conditions

E [g(ϕ)] = E


r1t − µ1

r2t − µ2

(r1t − µ1)2 − σ2
1

(r2t − µ2)2 − σ2
2

 = 04

then
√
T (ϕ̂− ϕ)

d−→ N

(
04,

+∞∑
j=−∞

E [gt(ϕ)gt+j(ϕ)′]

)

Using the delta method, the asymptotic distribution of δ̂ = ŜR1 − ŜR2 is

√
T (δ̂ − δ) d−→ N (0, σ∆SR)

where σ∆SR =
∑+∞

j=−∞E [(h1,t − h2,t)(h1,t+j − h2,t+j)] and hi,t = rit−µi
σi
− µi

σi

(rit−µi)2−σ2
i

2σ2
i

. It

follows that the statistic Z to test whether the difference in the Sharpe ratios ŜR1 − ŜR2 is
given by

Z =
ŜR1 − ŜR2√

1/T · σ̂∆SR

d−→ N (0, 1) (B.1)

Note that the Z statistic described in Equation (B.1) converges to the one described in
Memmel (2003) under the assumption that rt is i.i.d. and bivariate normally distributed.

27We are extremely grateful to Raymond Kan for sharing his notes on the derivation of this test.

62



Internet Appendix C Estimation Window and Distri-

bution of out-of-sample Sharpe

Ratios

The estimation window can have a large effect on the performance of different allocation
rules. Longer estimation windows might allow for more precise estimates of the parameters
and improve the performance of any allocation rule. In this section, we study how different
estimation windows affect the 3 aforementioned allocation rules (TAN, GMV, and IVol).
Furthermore, as we argued above, there is a trade-off between minimizing estimation error
and optimality of a portfolio. If a portfolio is theoretically optimal but subject to large
estimation error, it might perform worse than a portfolio that is sub-optimal theoretically
but subject to low estimation error. In this section, we also show what is the length of
the estimation window that is required for the TAN portfolio (which is optimal in a mean-
variance framework) to perform as well as a suboptimal strategy (GMV or IVol).28

Figure C.1 shows the Sharpe ratio of a given allocation rule as a function of the esti-
mation window T . The y-axis displays the monthly Sharpe ratio ŜRj, which is defined in
Equation (9), and the x-axis shows the estimation window T , expressed in months. For a
fixed estimation window T , we simulate 10,000 portfolios with optimal weights calculated
using the estimated mean excess return and variance-covariance matrix, µ̂ and Σ̂. As in
Section 2.2, assets are assumed to have the same Sharpe ratios, and the true volatility of
each asset is randomly drawn from a uniform distribution between 10% and 40%. The red
solid line shows the median Sharpe ratio of the tangency portfolio (ŜRTAN) for the 10,000
simulations, the blue dashed line displays the median Sharpe ratio for the GMV portfolios
(ŜRGMV ) and the green dotted line depicts the median Sharpe ratio for the IVol portfolios

(ŜRIV ol). The shaded areas contain the 5th and 95th percentiles from the 10,000 simulations.
In Panel A of Figure C.1, we consider the case of 5 uncorrelated assets. As shown by the

shaded area, the distribution of out-of-sample Sharpe ratios for the TAN portfolio is much
wider than that of the GMV or IVol portfolios. This is consistent with the intuition from
Section 2.2 showing that the TAN portfolio is subject to considerably larger estimation error
compared to GMV and IVol. Also, the median Sharpe ratio for the TAN portfolio becomes
superior to that of GMV portfolio only when the estimation window is greater than 1,500
months (≈ 125 years). The Sharpe ratios of the TAN and IVol portfolios if one knew the
true parameters would be approximately 18.63% as shown by the convergence for T →∞.29

For the GMV portfolio, the true Sharpe ratios would be 18.07%. Notably, the difference in
the Sharpe ratios would be small between the 3 different allocation rules if investors knew
the true parameters. The results for the case of 15 uncorrelated assets are shown in Panel B
of Figure C.1 and they are qualitatively similar to those in Panel A for the case of 5 assets.

[Insert Figure C.1 here]

28DeMiguel et al. (2009b) perform a similar simulation exercise. We differentiate from them because we
compare the performance of the tangency (TAN) and global minimum variance (GMV) portfolios to that of
the inverse volatility portfolio (IVol), which is not discussed in DeMiguel et al. (2009b).

29In Internet Appendix A, we show the necessary and sufficient conditions for the IVol portfolio to be
equivalent to the tangency portfolio in the absence of estimation error.
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Panel C shows the simulations when there are 5 highly correlated assets (constant pairwise
correlation of 0.7). If one knew the true parameters the Sharpe ratio of the TAN and IVol
portfolios would be approximately 9.56% while for the GMV portfolio the Sharpe ratio
would be 7.12%. Different from the results in Panel A and Panel B, Panel C shows that if
investors knew the true parameters, the GMV portfolio would deliver a considerably lower
Sharpe ratio compared to the TAN portfolio. This is not the case for the IVol portfolio
which exhibits a Sharpe ratio that is very close to that of the TAN portfolio. In Internet
Appendix A, we show that, in the absence of estimation error, the weights of the IVol
portfolio are close to the weights of the TAN portfolio when assets have the same Sharpe
ratios and equal pairwise correlations. Internet Appendix A shows that the assumption
that assets have the same Sharpe ratios is not restrictive but rather supported by empirical
evidence. We do not find the same support for the assumption of equal pairwise correlations
which implies that the IVol strategy is not optimal from a theoretical point of view. There
is therefore a tradeoff between theoretical optimality and estimation error: the tangency
portfolio (optimal from a mean-variance standpoint) has a larger estimation error than the
IVol portfolio (which is suboptimal theoretical) because it requires the estimation of expected
returns and correlations while the IVol portfolio relies solely on the estimation of volatilities.
This section highlights the existence of this trade-off between optimality and estimation error;
however, which portfolio performs in the real world is ultimately an empirical question that
we address in Section 4.
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Figure C.1. The effect of the estimation window. This figure shows the Sharpe ratio
performance of three different allocation rules as a function of the estimation window T .
The three allocation rules plotted are: the optimal mean-variance tangency portfolio (TAN),
the global minimum variance portfolio (GMV), and the inverse volatility portfolio (IVol).
The y-axis displays the monthly Sharpe ratio, and the x-axis shows the estimation window
T . For a fixed estimation window T , we simulate 10,000 portfolios with optimal weights
calculated using the estimated mean return and variance-covariance matrix, µ̂ and Σ̂. In
each panel, the legend reports the name of the series. The red solid line shows the median
Sharpe ratio of the simulated tangency portfolios (TAN), the blue dashed line displays the
median Sharpe ratio for the GMV portfolios and the green dotted line depicts the median
Sharpe ratio for the IVol portfolios. The shaded areas contain the 5th and 95th percentiles
from the 10,000 simulations. Panel A and Panel B show the simulations when there are 5
and 15 uncorrelated assets, respectively. Panel C and Panel D show the simulations when
there are 5 and 15 highly correlated assets (constant pairwise correlation of 0.7), respectively.
In all panels, assets are assumed to have the same Sharpe ratios.
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Internet Appendix D Description of the anomalies used

in this paper

Table D.1. This table lists the 76 anomalies used in this study. The column “Reference
Paper” refers to the paper that contains the methodology used to build the anomaly. When
authors make the data available until the end of 2019, we use their data. If not, we build
the anomalies ourselves.

# Anomaly Reference Paper Name

1 ABR1 Chan et al. (1996)
Cumulative abnormal returns around
earnings announcement dates. Hold-
ing period 1 month.

2 ABR6 Chan et al. (1996)
Cumulative abnormal returns around
earnings announcement dates. Hold-
ing period 6 months.

3 ACI Hou et al. (2018) Abnormal Corporate Investment.
4 ADM Chan et al. (2001b) Advertising expense-to-market.

5 BAB
Frazzini and Pedersen
(2014)

Betting-against-beta.

6 BM Fama and French (1993) Sort by book-to-market equity.
7 CEI Hou et al. (2018) Composite Equity Issuance.

8 CLA Ball et al. (2016)
Cash-based operating profits-to-
lagged assets using yearly Compustat
data.

9 CLAQ1 Ball et al. (2016)

Cash-based operating profits-
to-lagged assets using quarterly
Compustat data and holding period
of 1 month.

10 CMA Fama and French (2015) Conservative minus Aggressive.
11 COP Ball et al. (2016) Cash-based operating profitability

12 DA Hou et al. (2018)
Changes in in short-term invest-
ments.

13 DFIN Hou et al. (2018) Changes in net financial assets

14 DLTI Hou et al. (2018)
Changes in in short-term invest-
ments.

15 DNCA Hou et al. (2018)
Changes in non-current operating as-
sets.

16 DNCO Hou et al. (2018)
Changes in net non-current operat-
ing assets

17 DNOA Hou et al. (2018) Changes in net operating assets.

18 DPIA Hou et al. (2018)
Changes in PPE and inventory-to-
assets.

(Continued on next page)
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Table D.1 – continued from previous page
# Anomaly Reference Paper Name

19 DROE1 Hou et al. (2018)
4-quarter change in return on equity.
Holding period of 1 month.

20 DROE12 Hou et al. (2018)
4-quarter change in return on equity.
Holding period of 12 months.

21 DROE6 Hou et al. (2018)
4-quarter change in return on equity.
Holding period of 6 months.

22 DWC Hou et al. (2018)
Changes in net noncash working cap-
ital.

23 EM
Loughran and Wellman
(2011)

Enterprise Multiple

24 HML Fama and French (1993) High minus Low.
25 HMLD Asness and Frazzini (2013) The devil in HML’s details
26 IA Hou et al. (2018) Investment-to-assets.
27 IG Hou et al. (2018) Investment Growth, 1 year.
28 IG2y Hou et al. (2018) Investment Growth, 2 years.
29 IVC Hou et al. (2018) Inventory Changes.
30 IVG Hou et al. (2018) Inventory Growth.
31 MKT-RF Excess Market Return.

32 NEI1 Barth et al. (1999)
The number of quarters with consec-
utive earnings increase.

33 NOA Hirshleifer et al. (2004) Net operating assets.
34 NOP Boudoukh et al. (2007) Net payout yield.

35 NSI
Pontiff and Woodgate
(2008)

Net stock issues.

36 OA Sloan (1996) Operating Accruals.

37 OCA
Eisfeldt and Papanikolaou
(2013)

Industry-adjusted organizational
capital-to-assets.

38 OCP Desai et al. (2004) Operating cash-flow to price.
39 OP Hou et al. (2018) Payout Yield
40 OPA Ball et al. (2016) Operating profits to assets.
41 POA Sloan (1996) Percent operating accruals.
42 PTA Sloan (1996) Percent total accruals.
43 QMJ Asness et al. (2019) Quality minus Junk
44 R EG Hou et al. (2019) Expected Growth Factor.
45 R IA Hou et al. (2015) Investment Factor
46 R ROE Hou et al. (2015) ROE Factor

47 R111
Jegadeesh and Titman
(1993)

Price momentum, prior 11-month re-
turns, holding period 1 month

48 R1112
Jegadeesh and Titman
(1993)

Price momentum, prior 11-month re-
turns, holding period 12 months

49 R1115A Heston and Sadka (2008) Years 11–15 lagged returns, annual

(Continued on next page)
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50 R1115n Heston and Sadka (2008)
Years 11–15 lagged returns, nonan-
nual

51 R116
Jegadeesh and Titman
(1993)

Price momentum, prior 11-month re-
turns, holding period 6 months

52 R15A Heston and Sadka (2008) Years 1–5 lagged returns, annual
53 R1620A Heston and Sadka (2008) Years 16–20 lagged returns, annual
54 R1A Heston and Sadka (2008) Year 1-lagged return, annual
55 R1N Heston and Sadka (2008) Year 1-lagged return, nonannual
56 R25A Heston and Sadka (2008) Years 2–5 lagged returns, annual

57 R61
Jegadeesh and Titman
(1993)

Price momentum, prior 6-month re-
turns, holding period 1 months

58 R610A Heston and Sadka (2008) Years 6–10 lagged returns, annual

59 R610n Heston and Sadka (2008)
Years 6–10 lagged returns, nonan-
nual

60 R612
Jegadeesh and Titman
(1993)

Price momentum, prior 6-month re-
turns, holding period 12 months

61 R66
Jegadeesh and Titman
(1993)

Price momentum, prior 6-month re-
turns, holding period 6 months

62 RDM Chan et al. (2001b)
R&D expense-to-market using Com-
pustat yearly.

63 RE 1 Chan et al. (2001a)
Revisions in analysts’ earnings fore-
casts - 1 month holding period

64 RE 6 Chan et al. (2001a)
Revisions in analysts’ earnings fore-
casts - 6 months holding period

65 RER Tuzel (2010) Industry-adjusted real estate ratio

66 RESID11 1 Blitz et al. (2011)
11-month residual momentum, 1-
month holding period

67 RESID11 12 Blitz et al. (2011)
11-month residual momentum, 12-
month holding period

68 RESID11 6 Blitz et al. (2011)
11-month residual momentum, 6-
month holding period

69 RESID6 12 Blitz et al. (2011)
6-month residual momentum, 12-
month holding period

70 RESID6 6 Blitz et al. (2011)
6-month residual momentum, 6-
month holding period

71 RMW Fama and French (2015) Robust minus weak factor

72 ROE1 Hou et al. (2015)
Return on Equity with holding pe-
riod of 1 month.

73 ROE6 Hou et al. (2015)
Return on Equity with holding pe-
riod of 6 months.

74 SP Barbee Jr et al. (1996) Sales-to-price ratio

(Continued on next page)
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75 SUE1 Foster et al. (1984)
Standardized unexpected earnings.
Holding period of 1 month.

76 SUE6 Foster et al. (1984)
Standardized unexpected earnings.
Holding period of 6 months.
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Internet Appendix E Performance measures

We provide a performance comparison between IVolγ rules, tangency portfolio, 1/N rule,
and a benchmark portfolio that uses only the covariance matrix: the 1-norm-constrained
portfolio developed in DeMiguel, Garlappi, Nogales, and Uppal (2009a), which we label
DGNU1. Before providing the results, we describe the performance measures that we use in
our analysis. Following DeMiguel et al. (2009b), we consider 3 different measures: Sharpe
ratio, Certainty Equivalent Returns (CEQ) and Turnover. All 3 measures are evaluated
out-of-sample.

Sharpe ratio. Given the time-series of excess returns of the portfolio constructed using
allocation rule i, the out-of-sample Sharpe ratio is defined as the sample average excess
return of such rule (µ̂i) divided by its sample standard deviation (σ̂i):

ŜRi =
µ̂i
σ̂i

(E.1)

We check whether the difference in the Sharpe ratio of two different allocation rules is
statistically different from zero using the test described in Internet Appendix B.

Certainty Equivalent Return (CEQ). The CEQ of allocation rule i is defined as the
certain (i.e. risk-free) return that makes an investor indifferent between investing in i or
receiving such certain return. Formally, the CEQ of allocation rule i is computed as

ĈEQi = µ̂i −
γ

2
σ̂2
i (E.2)

where µ̂i and σ̂i are the mean and variance for average excess returns of the portfolio built
using allocation rule i. The parameter γ is the risk aversion coefficient, which we set equal
to 5.

We check whether the difference between the CEQs of the two allocation rules is sta-
tistically different from zero using the test for CEQ returns described in DeMiguel et al.
(2009b).

Turnover. The Turnover of allocation rule i provides information on the number of
trades required to implement such a rule. The higher the turnover, the more trades a
strategy requires to be implemented, and the higher the transaction costs will be. Assuming
that there are N assets and we have the time series of portfolio weights for T periods, the
turnover of allocation rule i is calculated as

Turnover =
1

T

T∑
t=1

N∑
s=1

(
|ŵi,s,t+1 − ŵ+

i,s,t|
)

(E.3)

where ŵi,s,t+1 is the optimal weight of asset s according to allocation rule i at time t + 1,
and ŵ+

i,s,t is the weight that asset s has before rebalancing at time t+ 1.
Return-gain. For each allocation rule, we compute the return-gain with respect to the

1/N rule. The return-gain is defined as the additional annualized return needed for the 1/N
rule to perform as well as the allocation rule i in terms of the Sharpe ratio. We calculate
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the evolution of wealth for allocation rule i at time t (Wi,t+1) as

Wi,t+1 = Wi,t (1 + ri,P )

(
1− ct ×

N∑
j=1

|ŵi,j,t+1 − ŵi,j,t+|
)

where ri,P is the return of the portfolio before transaction costs using strategy i, ct is the
time-varying proportional transaction cost parameter, ŵi,j,t+1 is the optimal weight of asset
j according to allocation rule i at time t+ 1, and ŵi,j,t+ is the weight that asset j has before

rebalancing at time t+1. The term ct×
∑N

j=1 |ŵi,j,t+1−ŵi,j,t+| represents the total transaction
costs for rebalancing the portfolio at time t+1. We follow Brandt et al. (2009) and Hand and
Green (2011) and assume that ct decreases over time. We model transaction costs according
to the following formula: ct = kt × 0.35%, where kt is a multiplier that decreases linearly
from 3.3 in January 1980 to 1.0 in January 2002 as in DeMiguel, Martin-Utrera, Nogales,
and Uppal (2020). Also, kt remains equal to 3.3 before 1980 and equal to 1.0 after January
2002. This parametrization gives use transaction costs that linearly decrease from 1.15% to
0.35% and they capture the decrease in transaction costs that have been observed over time
thanks to the increased efficiency of financial markets.

The out-of-sample portfolio returns net of transaction costs according to allocation rule i
are equal to the percentage change in wealth Wi,t+1/Wi,t− 1. Let µi and σi be the monthly
average and standard deviation of the monthly portfolio returns net of transaction costs
according to allocation rule i. The monthly return-gain of strategy i is defined as

return-gaini =
µi × σ1/N

σi
− µ1/N (E.4)
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Internet Appendix F Growth of $1 for a given volatil-

ity

Figure F.1. Growth of $1 when returns are standardized at 15%. This figure shows
the growth of $1 invested according to various allocation rules. The out-of-sample returns of
the various rules are the ones described in Table 3 and we standardize their volatility to 15%
(annualized) to make the strategies comparable. The different panels contain the results
for different datasets. Panel A uses the returns from “Equity, Fixed Income, Commodities”,
Panel B uses the returns from “Equity, Fixed Income, Commodities, and 10 S&P Industries”,
Panel C uses the returns from “Equity and Fixed Income”, Panel D uses the returns from
“76 Anomalies”, Panel E uses the returns from “10 Industries”, Panel F uses the returns
from “17 Industries”. All datasets are described in Section 3.2.
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Panel B - Equity, Fixed Income, Commodities
and 10 S&P Industries
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Panel C - Equity and Fixed Income
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Panel D - 76 Anomalies
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Panel E - 10 Industries
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Panel F - 17 Industries
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