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1 Introduction

Bank loans are complicated financial transactions between a borrower and a lender. A typical bank loan

contract includes not just key pricing parameters such as interest rate and maturity, but also additional

terms that serve to reduce the risk for the lender such as collateral requirements and covenant provisions.

Collateral requirements have been extensively studied in economics. Following the path-breaking

work of Kiyotaki and Moore (1997) the role of collateral has justifiably taken center stage in explaining

how aggregate economic fluctuations are affected by the financial system.1 At the same time, covenant

provisions have not received as much attention in economic theory, despite being a near-universal feature

of bank loans and extensively studied empirically in the finance literature. Covenants are not mere

technicalities and have real effects on firm investment (Chava and Roberts (2008)) and on the propagation

of the financial system shocks to the rest of the economy (Chodorow-Reich and Falato (2022)). This paper

aims to provide a tractable theoretical model of financial covenants.

Financial maintenance covenants are requirements that certain financial indicators (often ratios re-

lated to cash flow, income, or leverage) be over or under certain thresholds.2 They are written on publicly

observable information and aim to strike a balance between the need for flexibility for the borrower and

protection for the lender. Despite the popular use of maintenance covenants, the extant theoretical lit-

erature on covenant design has mainly focused on negative covenants that directly prohibit some action

by the borrower.3

We contribute to this literature by building a model that characterizes the equilibria under which fi-

nancial maintenance covenants arise. We address three main questions: 1) why are maintenance covenants

conditioned on publicly observable accounting variables, 2) what is their role in incentivizing borrowers,

and 3) what is the effect of the noise in the contracting variable (due to variation in accounting quality)

on optimal debt contracting and covenant design.

Our model for maintenance covenants features both moral hazard and adverse selection. We incor-

porate asymmetric information along three dimensions: the firm’s type, the firm’s unobservable action,

and the relationship between the firm’s action and the signal. In our setting, management can take an

unobservable action that brings private benefits to equity (and the manager) but costs to the lender. This

unobservable action is socially inefficient - the private gain to the firm is not sufficient to offset the cost

to the lender. Financial or accounting variables in our model are useful insofar as they are informative

signals of the firm’s action. As the bank’s screening technology is imperfect, the willingness to take a

contract with or without a covenant provides a signal of the firm’s type.

1 Fostel and Geanakoplos (2014) provide a recent review of this expansive literature.
2 Financial maintenance covenants are an important feature of loan contracts. See Appendix D for an overview.
3 Financial maintenance covenants in loan contracts require the borrower to meet quarterly thresholds of the contracting

variable. The contracting variable, while varying across contracts, is typically a ratio derived from items in the balance sheet
or the income statement such as the current ratio, the leverage ratio, or the interest coverage ratio. Negative covenants
prohibit (or require the bank’s approval for) certain actions such as paying dividends, taking on additional debt, and
engaging in a merger and acquisition. Interesting descriptive statistics about the kinds of covenants are provided by Chava
et al. (2019). Negative covenants have been studied by Rajan and Winton (1995), Gorton and Kahn (2000), and Gârleanu
and Zwiebel (2009) amongst others. A notable exception in the theoretical literature is Gigler et al. (2009) who study
financial covenants. Our paper complements the analysis in their paper by elaborating the role of moral hazard and the
quality of the signal in contract design.
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We adapt the Wilson-Miyazaki equilibrium concept to our setting and solve for the equilibrium

contracts.4 Depending on the parameter values, we find that we can have either a separating or a

pooling equilibrium. Our model provides a simple criterion that determines the kind of equilibrium that

will occur: the payoff to the firm with the lowest incentive to risk shift is maximized. In both equilibria,

the mechanism of the model is the same: since the choice of firm action affects the distribution of the

(public) accounting variable, the firm can affect the probability of covenant binding. As loan terms for

the borrower worsen after a violation, covenants can provide incentives for the firm’s action prior to their

violation and renegotiation. However, since firms differ by the benefit of risk-shifting and by the precision

of the signal, in equilibrium, some firms still risk-shift.

In the case of a separating equilibrium, the set of firms that do not risk-shift enjoy lower average

spreads because the costs to their lender are lower. However, these benefits occur because the contract

prevents inefficient risk-taking before the covenant is violated or renegotiated, not because the contract

groups together lenders with inherently lower costs. The pooling equilibrium is useful in preventing risk-

shifting by firms that are easy to incentivize (to not take the risky action), leading to a lower cost for

all firms. We show that the pooling equilibrium is preferred in two cases. First, it may be efficient to

prevent all firms from risk-shifting. Second, a separating contract imposes an additional constraint on

the maximization problem. If the mass of firms with high-risk shifting incentives is small, the benefits

of separation do not outweigh the costs. Thus, our paper shows how signals from accounting statements

such as financial ratios can improve the outcome for borrowers and lenders by reducing the extent of

inefficient risk-taking (in both the pooling and separating equilibrium), and by shielding good firms from

the actions of bad (separating) ones.

However, accounting statements are imperfect proxies for the firm’s action. For example, errors in

accounting statements introduce noise in the signal used in maintenance covenants. As the firm’s compli-

ance with the maintenance covenant depends on the observed value of the accounting signal, its noisiness

can directly affect the interaction between lenders and borrowers, and consequently the design of optimal

debt contracts. This issue has been a subject of a large empirical literature in both finance and account-

ing. For example, accounting transparency has been shown to affect loan pricing both empirically in Yu

(2005) and theoretically in Duffie and Lando (2001).

Our analysis of Audit Analytics data shows that between 2000 and 2018, an average of 15% of U.S.

public firms restated their financial reports every year. Overall, this translates to 39.4% of US public

firms restating their financial reports at least once during the same period.5 The high percentage of

restatements understates the true level of noise in accounting statements. Despite this evidence of noise,

financial ratios based on public accounting statements continue to be commonly used as signals or triggers

in loan contracts.

To examine the effect of the quality of accounting information on maintenance covenant design, we

augment our framework by introducing a measure of noise in the contracting variable.6 Our model, which

4 We discuss the Wilson-Miyazaki equilibrium in section 3.2.1.
5 We describe our analysis of the restatement data in Appendix C.
6 In the spirit of the literature of information economics and auction theory, we define a signal Z1 as more noisy than

signal Z2 if the payoff to the firm with the lowest incentive to risk-shift is lower in the equilibrium with signal Z1. We also
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incorporates the interaction of signaling (by choice of contract), incentive provision (by the incentive role

of covenants) and accounting quality, allows us to derive a nuanced view of the relationship between noise

and covenant design. On the one hand, when the accounting signal gets noisier, financial covenants need

to be tighter to provide incentives; on the other hand since generating incentives becomes more expensive

more firms will either choose the no-covenant contract (in the separating equilibrium) or will risk-shift

(in the pooling equilibrium). Thus, at low-to-moderate levels of noise, increasing the degree of noise

leads to tighter covenant strictness on contracts with covenants and more contracts without covenants.

For intermediate levels of noise, the separating equilibrium unravels, so all firms receive contracts with

covenants. Lastly, for very high level of noise providing incentives to any firm is inefficient, so all contracts

are without financial covenants.7

So far, we have treated the accounting signal Z (and its noise) as exogenous. However, the existence

of covenants written on the signal creates incentives for manipulation. In our final analysis, we extend

our model and allow the firm to manipulate the signal with some probability (as in Laux (2022));

the magnitude of this probability is a stand-in for lax internal controls, regulation, etc. We find that

even though manipulation is deliberate while noise is random, they both reduce the ‘decision-usefulness’

of the accounting signal. As the manipulation probability increases, the observed signal from financial

statements becomes less informative, which results in stricter covenants. If the firm can freely manipulate,

covenants lose all value and are not used. Thus, we find that, despite having a different mechanism,

manipulation has effects on the contract and payoff that are identical to (a particular form) of noise.

1.1 Related Literature

The theoretical literature on the role of financial covenants in debt contracts is large; and as such it is

important to describe how we relate and contribute to this literature. In general, covenants in the extant

literature are derived either to provide a valuable option to lenders to gain control rights, to exert power

over managers following an adverse financial event (Smith and Warner (1979), Berlin and Mester (1992),

Aghion and Bolton (1992), Dewatripont and Tirole (1994), Gigler et al. (2009)), or to diminish hold-up

problems associated with short term debt as in Rajan (1992). More recently, a pair of important papers

have modeled covenants as tripwires to aid in the renegotiation of debt contract terms (Gârleanu and

Zwiebel (2009) and Gorton and Kahn (2000)).

Our model is closely related to the work of Gârleanu and Zwiebel (2009). In their model, firms that

would be easy to incentivize ex-post are willing to give up rights ex-ante to signal their type. Thus

covenants reduce the cost of renegotiation since the lender must control a future action by the firm. As

the action is presumed to be observable, a covenant on a financial ratio or an accounting variable is

an inefficient tool to assign control rights. We explicitly construct our model to contrast the incentive

show that several ways of introducing noise in the accounting signal (random errors, white noise, etc.) are consistent with
our definition of noisiness.

7 Covenant-lite loans, or loans with no financial maintenance covenants, have become increasingly commonplace in the
riskiest sector of the syndicated loan market. At the end of 2018, more than 85% of all leveraged loans in the United States
were covenant-lite (Edwards (2019)). For a detailed discussion on covenant-lite loans and related agency issues, see Billett
et al. (2016).
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and signaling role of financial covenants. We show that when covenants are written and tested against

publicly observed accounting variables, the contract can serve a signaling purpose only if the covenant

also serves a direct incentive role. We find that this conclusion is maintained even in the presence of

noise in the accounting signal. Furthermore, we also demonstrate in a nested specification of our model

that the signaling role of covenants in Gârleanu and Zwiebel (2009) is not a necessary condition for the

existence of maintenance covenants.

Our paper is also related to Rajan and Winton (1995). In their study, the incentive problem is on

the side of the financial intermediary. If performing socially beneficial monitoring and exerting control

over the borrower is costly, it is efficient to delegate these functions to one of the lenders (the bank).

However, this creates free-riding problems. In their model, the variable on which the covenant is written

is observable only after costly monitoring. The right to demand early repayment if a covenant is breached

gives the bank enough renegotiation power that obtaining information becomes efficient. As the lender

must be able to determine if the covenant has been broken, information is acquired as a by-product. While

their work describes bank incentives and covenants well, their approach leaves financial maintenance

covenants unexplained. First, these covenants are written on public (and freely available) accounting

information. Second, the Rajan-Winton model precludes the lender (bank) from conditioning its action

on public information, which is the central contracting variable for financial maintenance covenants.

The rest of the paper is organized as follows. We describe the main model in Section 2. In Section 3, we

solve for the equilibrium contract and explore its properties. Section 4 is devoted to exploring the effect of

variation in accounting quality on the optimal contract. Section 5 explicitly models riskshifting. Section

6 models the effects of performance manipulation. Section 7 concludes. All the proofs are presented in

Appendix A. Appendix B has a more realistic model of renegotiation. Appendix C details the computation

of the restatement frequency for US public firms, while Appendix D provides estimates of the frequency

of financial maintenance covenants in loan contracts.

2 Environment

There are two parties to a relationship, a firm and a lender (bank). The firm needs a loan of size I, and

in the following period will have a positive cash flow W if the loan is given. We assume that at most

R ≤ W of the firm’s resources are available to repay the loan. For simplicity of exposition we assume

that the interest rate is zero, or equivalently that all sums have been appropriately discounted. Both

parties in the relationship are risk-neutral and there is a mass of perfectly competitive banks.

The firm’s management can conduct business in a safe (s) or risky (r) manner. This action is unob-

servable. If the action taken is (r), at the end of the period (after repayment to the bank), the firm gets

an additional payoff of x, while the bank suffers a loss of y.

Assuming some fixed benefit/cost of action r that is independent of the contract is a convenient

shortcut that we utilize in most of this paper. Section 5 presents a model that explicitly derives x and

y from risk-shifting. The action r leads to a mean-preserving spread of the cash flow. Limited liability
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implies that higher variability of cash flow shifts value from lender to borrower, and the increased

probability of costly default implies that the cost to the lender is higher than benefit to the borrower.

We assume that all the relevant firm characteristics are public information, except for the firm’s

benefit from taking the risky action - x. This assumption is motivated by the fact that the bank’s

screening technology is imperfect, which implies that even after conditioning on observable variables

there is some uncertainty about the permanent characteristics of the firm. In the context of the model,

the true benefit of risky action to the firm x is known to itself, but unknown to the bank. Let M(x) be the

bank’s subjective probability distribution over possible x. Alternatively, we can think that there is a mass

of firms with different values of x and the bank cannot distinguish among them. The two interpretations

are equivalent, but we will adopt the latter. Let [xa, xb] be the support of that distribution. We assume

that M(x) is continuous. The firm’s x will also serve as its label.

If the private benefit of risk-taking always exceeds the cost to the bank, then it will be efficient to

have a simple debt contract with the cost to the bank y priced in. In what follows, we assume that for

at least some of the firms the private benefit of risk-taking is lower than the cost to the bank, that is,

total surplus is maximized by taking the safe action. However, since the firm still has a private benefit

of risk-shifting, incentives must be given to achieve the efficient outcome.

Assumption 1 M(y) > 0 and xa > 0.

Assumption 1 implies that for a positive mass of firms, the private benefit of risk-taking x is smaller

than the cost y borne by the bank.

With competitive banking, the face value of the loan is D = I if it is anticipated that the firm will

play s and D = I + y otherwise. The efficient solution is not be consistent with incentives if a firm’s

value of risk-taking is higher than the value of the safe action, or x > 0. The second part of assumption

1 implies that all firms have an incentive to perform the risky action. Under these conditions, the face

value of the repayment of the loan is simply D = I + y.

We assume that there is some random variable Z that is correlated with the firm’s action. The

random variable Z has a conditional cumulative distribution function F (z|a), a compact support [za, zb],

and a conditional probability density function f(z|a), a = r, s that is continuous and strictly positive on

the support. Following Milgrom (1981), we make the assumption that the signal satisfies the monotone

likelihood ratio property (MLRP).

Assumption 2 The likelihood ratio

g(z) ≡ f(z|r)
f(z|s)

(1)

is strictly decreasing in z.8

This condition ensures that a higher value of z is a signal that the firm took the safe action (for any

non-degenerate prior on the action, a higher z increases the posterior probability that the firm took the

safe action). Intuitively, a low value of z is more likely if the firm took the risky action. So, if some

8 This is not a serious restriction. Let x be a finite-dimensional vector of all the variables correlated with the firm’s
action. Then if we define z ≡ fx(x|s)/fx(x|r), the one-dimensional variable z satisfies the assumption above. Moreover, the
Neyman-Pearson Lemma implies that, up to a strictly monotone transformation, z is the most informative signal.
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Table 1 Symbols

I Investment (size of the loan).
W Cash flow from the funded project.
R Cash flow available for repayment.
a Firm’s unobservable action. a ∈ {r, s}.
x Private benefit of the risky action (a = r).
y Cost to the lenders from the risky action (a = r).
M(x) Distribution of firm types.
z Publicly observable signal z, correlated with a.
F (z|a) Conditional CDF of the signal z.
H(z) F (z|r)− F (z|s).
Z = [za, zb] Support of the signal z.
c Renegotiation cost
D Base payment
A ⊆ Z Set of z-s for which the lenders can demand early repayment.

outcome is tied to the value of the random variable z, the firm might have an incentive to change its

action.

We can think of z as financial or accounting information generated by the firm. This signal is produced

at no additional cost and is observed by all parties costlessly and without error.

Payments can be conditioned on the outcome of the (costlessly observed) signal z; we will call invoking

this option of the contract as covenant renegotiation. There is a renegotiation cost c. The split of costs

borne by the firms and the bank does not affect the results (as long as any costs borne for the firm reduce

cash flow available for repayment), so for concreteness we assume it is incurred by the bank.9

Definition 1 A debt contract is a pair of base payment D, and a Borel-measurable set A ⊆ [za, zb] of

realizations of z at which there is a renegotiation.

We assume that the banking sector is competitive. The banks post offered contracts and they are

committed to their offers.

The sequence of events is summarized in the timeline. The timeline is also useful for understanding

the differences between our model and the extant theoretical models on covenant design. In the Gârleanu

and Zwiebel (2009) model everything is observable (at a cost) and the contract is renegotiated before an

additional action is taken. The covenant is then the right of the bank to block the (observable) action.

In the Rajan and Winton (1995) model, the bank acquires the signal z and depending on its value, it

may have the option to forbid an action. Finally, Gorton and Kahn (2000) assume that the bank always

has the right to renegotiate; this right the authors call a covenant.

In our work, we assume that the firm has an informational advantage over the lender, but that the

nature of its action has consequences for information reflected in accounting measures, z. So the signal

z is informative of the past rather than the future. Renegotiation of the contract based on the signal

cannot affect the action going forward (since it has already happened). However, since the renegotiation

is anticipated, it can have incentive effects, as we shall see.

9 We interpret c as legal, administrative, and monitoring costs. The cost c can also include the opportunity cost of
disrupted future investment or future higher financing costs for the firm. Chava and Roberts (2008) and Roberts and Sufi
(2009a) document this effect.
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Fig. 1 Timeline in the model

Interpretation of the signal z We interpret the signal z as the set of publicly reported variables, such

as financial ratios in accounting statements, generated by the borrower. Access to z can be more or less

valuable in the debt contract (in an ex-ante sense) for two reasons. First, the firm may make more or

fewer mistakes in preparing the report; second, even if correctly measured, the accounting signal z may

be more or less informative of the firm’s private information. We interpret both (1) and (2) as noise. We

consider the impact of noise on the equilibrium contract formally in section 4.

Covenant violation In our model, when the signal z falls in the set of prohibited values, the lender

receives additional payment (D′(z)−D) (which we discuss later on). This modeling choice is consistent

with payments made in practice. When a maintenance covenant is violated the loan is considered legally in

technical default, which gives the lender the right to demand immediate repayment of the principal (i.e.,

accelerate the loan date). Even in cases where the lender waives the covenant violation, a combination

of a one-time waiver fee, an increase in the interest rate, or additional collateral is often demanded by

the lender ( Roberts and Sufi (2009b), Sufi (2009a), and Vance (2005)). The details of the new contract

terms are determined via renegotiation.10

3 Optimal contracts

3.1 Incentive constraints

In order to solve the model, we start with analyzing the action of a firm facing a set of contracts. The

firm has no external source of funds, so all payments to the bank must be financed by the firm’s cash

flow. This implies the constraint D ≤ R,D′(z) ≤ R.

Suppose that a firm has signed a debt contract. It would choose to perform the safe action if and

only if, given the expected repayment function, the following condition is satisfied:

Prob(Ac|s)D +

∫
A

D′(z)f(z|s)dz ≤ Prob(Ac|r)D +

∫
A

D′(z)f(z|r)dz − x (2)

We call this condition the incentive constraint.

The repayment function cannot be arbitrary: it has to be consistent with the bargaining process

between the firm and the bank after the covenant is violated. We assume a simple bargaining process in

which the bank makes a take it or leave it offer to the firm, which, at this point, has no outside option.

10 For details see Roberts and Sufi (2009a), pg. 1688 -1689. According to S&P Leveraged Commentary and Data, covenant
renegotiations are costly, with the average covenant waiver fee amounting to 2.4% of the loan amount for US corporations
Hyde (2008)).
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Then, clearly, D′(z) = R for all z ∈ A. Then a contract is simply a pair (A,D), where A is a Borel set

and D is a real number. This implies that the condition for the firm to take the safe action will be:

[R−D][Prob(A|r)− Prob(A|s)] ≥ x. (3)

Given a finite set of contracts, the management will choose contract i and action a that maximize its

payoff:

(i, a) ∈ argmax
i∈{1,...n},a∈{r,s}

W − Prob(Ai|a)R− (1− Prob(Ai|a))Di + χr(a)x,

where χr(.) is an indicator function, which is 1 if a = r and 0 otherwise.

The importance of renegotiation The potential worsening of loan terms following a renegotiation is an

important tool in providing incentives to the firm. If the firm can refinance the loan with outside funds at

the original terms, the mechanism in our model will not operate. However, the literature on relationship

banking shows that there can be substantial costs when switching lenders. Thus, we can interpret the

change R−D as constrained by the (inferior) outside option that firms have.

The mechanism of our paper still operates even if incumbent banks have no cost advantage to out-

siders. In Appendix B we explicitly model the effect of outside banks on renegotiation. In this case it

is impossible to prevent risk-shifting completely (if the firm always plays s, then the outside banks will

refinance the loan at the original terms, so no incentives can be provided), but the probability of risk-

shifting can be reduced by covenants. As the ex-post probability that the firm risk-shifted depends on z,

the renegotiated amount increases with the severity of the covenant violation.

3.2 Adverse selection

We begin our analysis by solving the model for a given (and known) conditional distribution of the signal

z. We propose our measure of noise in section 4.1 and show how it can be derived from the distribution

of z. Therefore, we first solve the model for a fixed level of noise. In section 4.2 we consider how varying

the degree of noise affects the equilibrium.

Earlier, we discussed the behavior of firms who are committed to a specific loan contract. In practice,

however, firms choose the contracts they sign in a competitive loan market. Next, we model a setting

where banks offer a variety of contracts (face value - covenant pairs) and firms are free to select the

contract that best suits them. Since the covenant affects the firm’s choice of a contract, it performs both

incentive and screening functions.

3.2.1 Equilibrium

Ever since the seminal work of Rothschild and Stiglitz (1976), it has been well known that competitive

equilibria with adverse selection and screening might not exist. The intuition is simple. Suppose that in

equilibrium the high-risk and low-risk firms are separated. If the number of high-risk firms is small, the

cost to low-risk firms of being pooled will be small, so a pooling contract will be preferred by everyone.
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On the other hand, if the contract is pooling it will be possible to offer a contract that is preferred only

by low-risk firms. As a result no equilibrium set of contracts exists.

The pooling contract is not sustainable, since it is profitable to “steal” low-risk customers and split

the savings between the bank and the firms. However, the cost savings are contingent on the high-risk

firm remaining on the original contract. If the original contract was pooling risks and breaking even, then

under the new circumstances it would not be breaking even, and consequently it would be withdrawn.

Thus, the pooling contract is fragile due to the myopia of the party offering a new contract.

Recognizing this, Wilson (1977) and Miyazaki (1977) introduce an equilibrium concept (sometimes

called anticipatory equilibrium) in which every party correctly predicts the consequences of its offered

contract on all other parties. We adapt the Wilson-Miyazaki equilibrium to our environment: the crucial

additional restriction is that when introducing new contracts every bank takes into account that money-

losing contracts will be withdrawn from the market.11

The equilibrium consists of the set of contracts on offer and the actions of the firms. The firms

choose which contract to sign and what action to take. The first choice is denoted by the contract

assignment function b : [xa, xb] → {1, . . . , n}. Given that, the set of firms that take up contract i is

Bi = {x : b(x) = i}. The second choice is the action and is denoted by the action recommendation a(x).

The first restriction on the equilibrium is that all firms choose a contract and an action that maximize

their profits.

Definition 2 Given an arbitrary finite set of contracts, {(Ai, Di)}, i = 1 . . . n, a contract assignment

b : [xa, xb] → {1, . . . , n} and an action recommendation a : [xa, xb] → {r, s} are consistent with individual

rationality if

(b(x), a(x)) ∈ argmax
b∈{1,...n},a∈{r,s}

W − Prob(Ab|a)R− (1− Prob(Ab|a))Db + χr(a)x, ∀x ∈ [xa, xb].

Notice that for a given set of contracts the restriction above uniquely determines the equilibrium contract

and action for all but a measure zero of firms. Also, if b(x) (and hence Bi) and a(x) are consistent with

individual rationality, they are also Borel-measurable.

The second restriction on the equilibrium concerns the way banks form expectations about the profit

related to offering a new contract. In a traditional screening equilibrium banks 1) assume that all other

contracts will remain on offer, and 2) correctly anticipate which firms will take the new contract, given

assumption 1. In our equilibrium we add an additional demand on a bank’s rationality: a bank is able to

take into account its effect on the profitability of other banks and hence anticipate that contracts that

start losing money will be withdrawn.

Definition 3 Given a finite set of contracts, a surviving contracts set is a subset of the original set

such that (i) given the new contract assignment of firms and action recommendations consistent with

individual rationality, all the contracts are making nonzero profits, (ii) the collection is maximal by

inclusion amongst all collections with property (i).

11 The equilibrium is static, even though we use dynamic language to describe it. Netzer and Scheuer (2014) give a
game-theoretic foundation of the equilibrium concept. They show that Wilson contracts are the unique robust equilibrium
of the game.
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We can think of arriving at a surviving contracts set as the outcome of the following procedure.

Pick an arbitrary money-losing contract and eliminate it. Then let the firms reoptimize and take up the

contract that maximizes their payoffs. Given the new distribution of firms along contracts, recompute

expected bank profits. Then continue the procedure until there are no money-losing contracts left. Since

the order of elimination matters, there will be a collection of surviving contracts sets.

At this stage we are ready to define an equilibrium.

Definition 4 A competitive equilibrium in an economy with adverse selection consists of a finite set of

contracts S = (Ai, Di), i = 1 . . . n, a contract assignment function b(x), and an action recommendation

a(x) such that:

1. The partition of firms along contracts and the action recommendation are consistent with individual

rationality.

2. Banks break even on each contract:∫
Bi

[
Prob(Ai|a(x))(R− c) + (1− Prob(Ai|a(x))Di − I − χr(a(x))y

]
dM(x) ≥ 0.

3. There does not exist a finite set of alternative contracts S′ = {(Aj , Dj)}, different from the existing

contracts, such that for one of the surviving contract sets A for S ∪ S′, S′ ⊆ A and for some s ∈ S′,

profits are strictly positive.

Condition (3) requires that it is impossible to add a contract that will survive the iterated elimination

of money-losing contracts and make a positive profit. By our definition, we have made the additional

restriction as loose as possible - the bank holds the most optimistic view about the profitability of a new

contract. On the other hand, we have imposed the restriction that all the introduced contracts are in

the surviving contracts set. This prevents introduction of a pair of contracts, one of which is deliberately

losing money in order to eliminate an existing contract.

The equilibrium as described appears to be complicated and its existence does not appear to be

guaranteed. However, we are able to show that an equilibrium always exists. Second, we show that the

equilibrium contracts have a simple structure and are the optimal policy in a constrained maximization

problem. In the rest of the section, we simplify the equilibrium analysis and show that the equilibrium

will be one of three types: separating, risk-taking, and pooling.

We can simplify the analysis with three observations. First, any contract can be transformed into a

contract of the type ([za, z̃], D) in such a way that the firm’s incentives for action and expected returns

are unchanged and the bank’s costs are lowered. This does not change the endogenous distribution of

firms along contracts. Second, if two firms choose the same action, they choose the same contract - the

one that minimizes expected payment, conditional on the action. Therefore, there can be at most two

types of contracts taken up. Third, if a firm x optimally plays r, then all firms with x′ > x will take the

same contract and play r. Similarly, if firm x plays s, a firm with x′ < x will also play s. Then here are

the possibilities:
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Firm type xa ≤ x ≤ x̂ x̂ ≤ x ≤ xb

Action s r

The cutoff point x̂ summarizes the possibilities: if x̂ = xa, then in equilibrium all firms will choose the

risky action, which implies that the contract will be without covenants; if xa < x̂ < xb, in equilibrium

some firms will play risky and some will play safe; finally if x̂ = xb then all firms will play safe, so

all observed contracts will have covenants. The contract with covenants is ([za, z̃], D) and the contract

without a covenant is simply a flat payment of D.

Summarizing the discussion above, we have the following:

Proposition 1 Suppose an equilibrium exists. Define x̂ ≡ sup{x ∈ [xa, xb] : Firm x plays s}; if the set

is empty set x̂ ≡ xa.

Then:

1. All firms with x ∈ [xa, x̂) play s and all firms with x ∈ (x̂, xb] play r.

2. If x̂ = xa, then in equilibrium all firms with x ∈ (xa, xb] will choose the contract (∅, I + y).

3. If x̂ = xb, then in equilibrium all firms with x ∈ [xa, xb) will choose the contract ([za, z̃], D) with

binding incentive and break-even constraints.

Proof In Appendix A.

We note that the only possibility for two contracts to coexist is if x̂ ∈ (xa, xb) and all firms with

x ∈ [xa, x̂) take one contract, while the firms x ∈ (x̂, xb] take the other. Somewhat abusing the standard

terminology, we call this a separating equilibrium. In all other cases, there is only one contract on the

market. If all firms take action a = r, we call this a risk-taking equilibrium; all other equilibria we call

pooling.

Definition 5 An equilibrium is separating if there exist two contracts, each taken up by a nonzero mass

of firms, such that all firms in the first contract take action a = s and all firms in the second contract

take action a = r. An equilibrium such that all firms choose a = r is risk-taking. An equilibrium that is

not separating or risk-taking is pooling.

In the following sections, we consider briefly the different types of equilibria.

3.2.2 Separating equilibria

First, we conjecture that the equilibrium is separating. For any contract, (almost) all firms that choose

it will take the same action.

Let’s guess that there are (a positive mass of) firms playing s and r. First, look at some contract

(A,D) taken up by firms playing r. The break-even constraint and the assumption of separation implies

that Prob(A|r)R + (1 − Prob(A|r))D ≥ I + y. If the inequality is strict, it would be feasible to add

the contract (∅, D′) such that I + y < D′ < Prob(A|r)R + (1 − Prob(A|r))D. The new contract would
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make positive profits, which is a contradiction. So the contract taken up by the firms playing r is simply

(∅, I + y).

Now consider the contract taken up by the ‘safe’ firms. By the assumption of separation, ‘risky’ firms

must weakly prefer the ‘risky’ contract. So, the contract for safe firms must satisfy:

Prob(A|r)R+ (1− Prob(A|r))D ≥ I + y.

Also the bank must break even on the contract. Since all firms that take up the contract play s, then

the break-even constraint is as follows:

Prob(A|s)R+ (1− Prob(A|s))D ≥ I + Prob(A|s)c.

The equilibrium contract must minimize expected repayment from that contract subject to the two

constraints. If it does not, a bank can offer a new contract that attracts a mass of firms playing s and

makes a positive profit. Then the payoff for the ‘safe’ firms from a separating contract is given by the

problem P1 below:

v∗s = sup
A,D

W − Prob(A|s)R− Prob(Ac|s)D (4)

subject to D ≤ R, A ⊆ [za, zb]

Prob(A|s)R+ Prob(Ac|s)D ≥ I + cProb(A|s) (5)

Prob(A|r)R+ Prob(Ac|r)D ≥ I + y, (6)

where by convention v∗s = −∞ if the constraint set is empty.

Lemma 1 If the constraint set for problem P1 is nonempty, then the optimum is attained, A = [za, z̃],

(5) and (6) are binding, and the solution is unique.

3.2.3 Risk-taking equilibria

The case when all firms take action a = r is easy to analyze. Competitive forces lead to the contract

(∅, I + y) being offered. The payoff to the lowest-x firm from this contract is v∗r = W + xa − I − y.

3.2.4 Pooling equilibria

We call all non-separating and non-risktaking equilibria pooling. In a pooling equilibrium, either all

firms take the same action a = s, or the actions s and r coexist for some contract. As a consequence,

conditional on the chosen action, the expected payment is the same for all contracts. This implies the

following Lemma.

Lemma 2 Suppose there exists an equilibrium that is pooling. Then there exists only one contract taken

up by a positive mass of firms.

Proof In Appendix A.
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Given the unique equilibrium contract, firms will choose action r if x ≥ x̂ ≡ (Prob(A|r)−Prob(A|s))(R−

D). Thus we see the two possible cases for the pooling equilibrium: if x̂ ∈ (xa, xb), some firms take action

a = r and others choose a = s; if x̂ ≥ xb then almost all firms choose the safe action.

The key to characterizing the equilibrium pooling contract is the fact that it maximizes the profit of

firm xa, subject to appropriate constraints. Suppose that the contract on offer does not do that. Then it

will be possible to offer a contract that is preferred by low-risk firms with x ∈ [xa, x
′) for some x′. Then

the existing contract is saddled with firms that are more likely to risk-shift, so average costs rise and the

original contract is withdrawn. Finally, all firms take up the new contract, which by construction breaks

even.

Therefore, the equilibrium pooling contract can be derived with a contract theory approach. In the

contract design problem, we specify the actions of all firms directly. The contract specifies x̂, z and D

and must satisfy incentive constraints and break even constraints. The value of the low-x firm when the

cutoff firm is x̂ is derived by the following problem P2:

v∗p(x̂) = sup
A⊆[za,zb],D

W − Prob(A|s)R− Prob(Ac|s)D (7)

subject to (Prob(A|r)− Prob(A|s))(R−D) = x̂ (8)

Prob(A|s)R+ Prob(Ac|s)D + (1−M(x̂))x̂ ≥

I + y[1−M(x̂)] + c[M(x̂) Prob(A|s) + (1−M(x̂)) Prob(A|r)]. (9)

Equation (8) is the incentive constraint and condition (9) is the break-even constraint.12 Let the value

of the best pooling contract be v∗p = sup{v∗p(x̂)}.

Below we show that with an additional assumption, problem P2 either has a well-defined maximum,

or no pooling contract is feasible (so v∗p = −∞).

Assumption 3 Let A(x̂) be the optimal A in the pooling contract if the cutoff firm is x̂; if no contract

is feasible for x̂, define A(x̂) = ∅. Then supProb(A|s) < 1.

Lemma 3 If xa > 0, assumption 3 holds, M(x) is continuous and the constraint set of P2 is nonempty,

then the optimum for problem P2 is attained, the constraint (9) is binding and A = [za, z̃].

Proof In Appendix A.

3.2.5 Equilibrium existence

In Sections 3.2.2, 3.2.3, and 3.2.4, we showed that banks seek to offer contracts that are attractive to

low-x firms. As a result, we showed that if a separating equilibrium contract exists, it must be a solution

to P1; if a pooling separating contract exists, it must be a solution to P2 and if in equilibrium all firms

act a = r, then the equilibrium contract is (∅, I + y). The technical Lemmas 1 and 3 ensure that the

problems P1 and P2 either have solutions or are infeasible. Then, if an equilibrium exists, it maximizes

12 It is possible that the optimal pooling contract induces expected payment by the risky firms of more than I+ y; in this
case some bank will offer the contract (∅, I + y + ϵ) and unravel the pooling equilibrium. This will never happen given the
parameter assumptions we have made.
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the value of the xa firm among the best separating, risk-taking or pooling contract. Formally, we have

the following theorem:

Theorem 1 An equilibrium exists. The equilibrium contract maximizes the payoff to firm xa, which is

given by v∗ = max{v∗s , v∗r , v∗p}.

Proof In Appendix A.

Our environment always has an equilibrium outcome of the Wilson-Miyazaki type. Moreover, it has

a clear structure and can be derived as the maximum of three auxiliary problems.

What ensures the existence of equilibrium? In the classic adverse selection setting, an equilibrium

fails to exist if there are too few high-risk agents. In this case, a pooling contract is preferred by everyone,

but the pooling equilibrium will itself be unravelled by a contract that appeals only to low-risk agents.

In our equilibrium, pooling survives because when a bank offers a new contract, it takes into account its

effect on other debt contracts. The bank cannot steal the good risks and leave the rest, since it knows

that contracts saddled with bad risks will be withdrawn.

As a result, in the pooling case, banks compete by offering contracts that are designed to break

even when all the firms take them up. Thus, the Wilson-Miyazaki equilibrium always exists and can be

formulated as a contract theory problem.

3.3 Analysis of the adverse selection model

By Lemmas 1 and 3, the covenant set A is just an interval A = [za, z̃]. Since breaking the covenant is

costly, it is optimal to minimize the probability that it will be in effect. The MLRP property implies

that the signal is most informative of risk-taking for a low value of z, so it is optimal to choose a set A

with the smallest possible values for z, and hence an interval.

This result conforms to contracts that we observe in practice and allows us to identify the “strictness”

or “tightness” of a covenant with the threshold value z̃.

3.3.1 Analysis of the separating equilibrium

In this section, we use the fact that the contract in the separating equilibrium is the solution to problem

P1. This allows us to find a simple necessary condition for the existence of a separating equilibrium.

Proposition 2 A necessary condition for a separating equilibrium is that the problem P1 has a solution

(denoted (z̃, D̃)) and x̂ ∈ (xa, xb), where x̂ = y − cF (z̃|s).

If the equilibrium is separating, then all firms with x ∈ [xa, x̂) will take the contract with covenants

(z̃, D̃) and all firms with x ∈ (x̂, xb] will take a contract without a covenant with D = I + y.

Proof In Appendix A.



16 Redouane Elkamhi et al.

In problem P1, we find the optimal separating contract for the firms taking action a = s. In other

words, the proposition above states that a necessary condition for the equilibrium to be separating is

that a positive measure of firms take action a = s when faced with the separating contract. If x̂ ≤ xa,

then the simple risk-taking contract will be preferred by all firms. When x̂ ≥ xb, then a pooling contract

in which all firms are incentivized to choose a = s is preferable.

Next, we turn to comparative statics on the equilibrium contract.

Proposition 3 The optimal covenant strictness z̃ in the separating contract is increasing in y and I

and decreasing in c, while the threshold firm x̂ is decreasing in c and I.

Proof In Appendix A.

The effect of renegotiation cost If the renegotiation cost c increases, the contract with covenants becomes

less attractive, so the marginal firm will shift towards the no-covenant contract. Both the strictness z̃

and the prevalence x̂ of the contract go down; however, the total renegotiation cost F (z̃|s)c increases.

It is interesting to contrast the separating contract to the contract with known type. In the latter

case, an increase in the cost of renegotiation leads to stricter covenants. The reason for the different

conclusion is that with adverse selection the marginal firm to be incentivized is endogenous – when the

covenant contract becomes less attractive, more firms will switch over to the no-covenant contract; then

the covenant necessary to provide incentives is looser. In general, this implies we see that a model with

known propensity to risk-shift may be misleading.

The effect of debt amount If the size of the investment increases, the bank needs to collect more revenue

to break even; this requires an increase in the covenant strictness. This effect is partially offset by the

fact that the covenant contract has now become (relatively) less attractive to good risk-shifters, so x̂

goes down.

The effect of the cost of risk-shifting y The effect of a change in y is more ambiguous. The no-covenant

contract becomes more expensive since the additional cost must be factored into the flat repayment.

This in turn requires the covenant contract to be stricter, even though none of the firms that take it

up actually inflict the cost y on the bank. The effect on the set of firms that take up each contract is

indeterminate and depends on the exact parameters of the model, in particular the cost of renegotiation

and the correlation of the signal z with the action.

3.3.2 Analysis of the pooling equilibrium

The pooling equilibrium is slightly more complicated to characterize since the optimal policies are not

necessarily continuous. However, the decomposition of the problem into two steps allows us to analyze

comparative statics using numerical methods.
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Fig. 2 Pooling equilibrium analysis

Proposition 4 The equilibrium pooling contract is of the form A = [za, z̃], D̃ and it is the solution of

the problem:

min
z,D,x

F (z|s)R+ (1− F (z|s))D (10)

(F (z|r)− F (z|s))(R−D) = x̂ (11)

F (z|s)R+ (1− F (z|s))D +M(x̂)x̂ ≥

I + y[1−M(x̂)] + c[M(x̂)F (z|s) + (1−M(x̂))F (z|r)] (12)

Suppose the equilibrium involves pooling and the cost renegotiation c goes up. Then the cutoff x̂ and

the covenant strictness z̃ both fall. If the cost to the bank y goes up, then the cutoff and the covenant

strictness z̃ will increase.

The intuition behind these results can be demonstrated in Figure 2. We plot (with a black dotted

line) the value of a pooling contract with perfect information that instructs all firms above the cutoff to

risk-shift. Since risk-shifting is inefficient, clearly this curve is upward-sloping. Next, we plot (with a red

solid line) the value of the contract with a covenant. The difference between them is the renegotiation

cost. The optimal threshold is the point that maximizes the black curve. In the lower panel, we have the

same graph with higher renegotiation costs. Since the increase in renegotiation costs is higher at higher
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thresholds, the value of the contract with covenants falls more at higher threshold values. Therefore the

optimal threshold firm is reduced.

3.3.3 Discussion

This section demonstrated that we can analyze a model in which both adverse selection and moral hazard

are present. In particular, the firm’s unobserved type is their willingness to engage in moral hazard.

The key to analyzing this general model is that the firm with the lowest incentive to risk-shift is the

most desirable customer for the banks. So the only contract that is immune from “client-poaching” is

the one that maximizes that firm’s profit subject to information, incentive, and break-even constraints.

In the separating equilibrium, covenants add value to low-x firms in two ways. First, they keep

firms with high incentive to risk-shift away from the low-risk contract. So they are a communication

mechanism. However, this signaling role is inextricably linked to their second incentive role - the low-risk

contract is more attractive to firms with low-x precisely because it lowers costs by preventing ex-ante

inefficient behavior of the firms taking up that contract.

In contrast, we show that covenants exist in the pooling equilibrium only for their incentive role. In

the pooling equilibrium risk-shifting firms pay on average more than other firms. However, the additional

costs they bring to the pool are larger than the additional revenues, so they are subsidized by the non-risk-

shifting firms. The benefit of covenants is that they reduce the mass of firms in the pool that risk-shift;

this eliminates some of the inefficient risk-taking and lowers costs for everybody.

Finally, what determines the choice between the two kinds of equilibria? In the separating equilibrium,

the optimal contract does not depend on the distribution of firms M . Since all the constraints in problem

P1 are binding, the optimal solution is strictly bounded away from the full-information case. However,

for the firms with low x the benefits of separation from risk-shifters depend on the number of firms with

high risk. If the right tail of the x-distribution is thin, it is optimal to prevent only firms with moderate

x (but the large mass of firms) from risk-taking, since this distorts the optimal contract less.

4 Signal quality and covenant design

The role of borrower accounting quality in debt contracting is an important topic in accounting research

(Armstrong et al. (2010)). What is the effect of noise in the accounting signal on covenant design? How

does the equilibrium type change when the amount of noise in the signal increases? To answer these

questions, we need first to simplify the signal structure and to introduce our measure of noise.13

4.1 Measures of noise

The distribution of the signal z can be complicated. However, since any monotone transformation pre-

serves the information in the signal, the signal can be easily normalized as follows.

Lemma 4 Without loss of generality, we can assume that za = 0, zb = 1 and Z|s ∼ Unif(0, 1).

13 We use the terms signal quality or precision, and its inverse ‘noise’, interchangeably as appropriate.
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Proof In Appendix A.

With this normalization, we just need to compare the distribution of the signal when the action

a = r. The question of informativeness of signals has been extensively studied in Statistics and in

Auction Theory with some classic results by Blackwell (1953) and more recent work by Ganuza and

Penalva (2010). In our problem, since the signal can be easily normalized, variance or dispersion do not

make a signal more or less desirable. Thus, in our model, the signal is only relevant in the information

it contains about the action of the firm. This brings us to the following definition of informativeness:

Definition 6 A signal Z1 is more informative than Z2 if for all allowable primitives of the model, the

payoff of the firm with the lowest x is higher with signal Z1.

Proposition 5 A signal Z1 is more informative than Z2 if and only if FZ1
(x|r) ≥ FZ2

(x|r) for all

x ∈ [0, 1].

Proof In Appendix A.

Are there economically plausible mechanisms that can generate noise, consistent with our definition?

Here we consider two concrete examples in which noise can be introduced to a signal and show that they

agree with our definition. In both

4.1.1 White noise

First, suppose that (the correctly measured) signal Z reflects some useful underlying conditions and some

temporary and irrelevant information. Specifically, suppose that Y is a random variable that satisfies the

assumptions of the model (MLRP) and that W is a random variable that is independent of the action

a. Then let the signal Zα be defined as Zα = Y + αW , α ≥ 0. W is irrelevant noise that needs to be

filtered out. A larger α “drowns out” the valuable signal Y . To simplify the exposition of the proofs, we

will assume that Y and W are positive and have continuous densities.14

Proposition 6 Let Ẑα be the normalized signal Zα. Suppose that Ẑα satisfies MLRP. If α1 < α2, then

Ẑα1 is more informative than Ẑα2 .

4.1.2 Random errors

Another mechanism to introduce noise is to assume that with some probability an error occurs and a

completely uninformative signal is reported. Let Zα take the value of Z with probability 1 − α and of

W with probability α, where Z satisfies the assumptions of the model and W is independent of a. We

assume that Z and W have a common support and that FW (z) = FZ(z|s).

Proposition 7 Let Ẑα be the normalized signal Zα. Then Ẑα has a continuous pdf, support [0, 1] and

satisfies MLRP. If α1 < α2, then Ẑα1 is more informative than Ẑα2 .

14 We assume that Ẑα satisfies MLRP. For sufficient conditions to ensure that MLRP is preserved, see Shanthikumar and
Yao (1986).
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4.2 Analysis

What is the effect of noise on the kind of equilibrium that prevails and on covenant strictness? We will

consider a family of signals that can be compared in terms of noise (the reverse of informativeness).

Let α ∈ [0, 1] index the family of distributions, which have CDFs F (z, α|a). Higher values of α cor-

respond to more noise. Then Lemma 4 and Proposition 5 imply that we can normalize F (z, α|s) = z

and ∂
∂αF (z, α|r) < 0 for all z ∈ (0, 1). The extreme case α = 1 corresponds to no information –

F (z, 1|r) = F (z, 1|s), ∀z.

4.2.1 The contract with known x

First, we consider the case of a known x. We look at the interaction of adverse selection and noise later

on in this section. We use Lemma A.2 to characterize the relationship between noise and the contract.

Proposition 8 Let z(α) denote the optimal covenant strictness. Suppose that z(0) > 0. There exists a

cutoff signal precision ᾱ ∈ (0, 1) such that z(α) is strictly decreasing on [0, ᾱ) and the optimal contract

is without covenants for α ∈ (ᾱ, 1].

Proof In Appendix A.

As the noise in the signal increases, covenants need to get increasingly stricter in order to provide

the correct incentives. As a result, the expected costs of covenant violations increase (since covenants

will be binding even though firms choose action a = s). Finally, for sufficiently high level of noise, the

no-covenant contract dominates.

4.2.2 Separating equilibrium

We next turn to the effect of noise on the separating equilibrium. As we shall see, noise affects the

kind of equilibrium that prevails. Let B be the set of α-s (possibly empty) such that the equilibrium is

separating. We consider how noise affects the contract on that set. Then we have the following result,

similar to Proposition 8.

Proposition 9 The optimal covenant strictness z(α) is strictly increasing on B and the cutoff firm x̂(α)

is decreasing in α.

Proof We show that z(α) is strictly increasing in Appendix A. Since x̂ = y−F (z|s)c, then x̂(α) = y−z(α)c

is strictly decreasing since z(α) is strictly increasing.

As before, the covenant needs to become stricter to provide incentives for the firm to choose a = s.

However, since the value of the no-covenant contract is independent of the noise level, more and more

firms will prefer the no-covenant contract, and consequently the number of firms that play s will shrink.

Since the risky action is socially inefficient, an increase in the level of noise not only redistributes resources

to risk-shifting firms, but also increases the prevalence of value-destroying risky activities.
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4.2.3 Separating, pooling, and the no-covenant equilibrium

Finally, what can we say about the equilibrium type as a function of the level of noise? The equilibrium

contract selects from the optimal pooling, separating, or the no-covenant contract to maximize the payoff

of the xa firm. In general, the payoff of the pooling contract will be continuous and decreasing, but can

be highly non-concave, depending on the distribution of firm types. Thus we employ numerical analysis

to study the equilibria. We experiment with a variety of functional forms and parameters and find that

our results are robust.15

We find that two parameters are crucial: (1) y, the cost of risk-shifting, relative to the distribution

of firms x, and (2) the cost c of breaking the covenant. We consider four possible cases.

We present our results in Figure 3. In all cases, the level of noise is on the X-axis. First, we plot

the equilibrium type, where 1, 2, and 3 stand for the no-covenant, pooling, and separating equilibria

respectively. Underneath we plot the share of firms that choose action a = s. If the equilibrium is

pooling, then this is the fraction of firms that undertake the safe action. If the equilibrium is separating,

this is the fraction of firms that take the ‘safe’ contract. Next we show covenant strictness for firms who

take up contracts with covenants, and the payoff for the safest firm.

Low y, low c In this case, when the noise level is low, the separating equilibrium is optimal. This is

because the constraint to separate the bad risks out is easy to satisfy. Then as signal quality gets worse,

we need stricter covenants. Since the payoff of the outside option is fixed at R−I−y when the separating

contract gets worse, more and more firms choose the risk-taking contract. Finally, as the quality of the

signal becomes very bad, there is a switch to the pooling equilibrium as allowing some risk-taking is

cheaper than keeping all the bad risks out. The covenant keeps getting stricter, but as signal quality goes

down, we see more and more risk-taking. In the end, we get contracts without covenants.

Low y, high c The results are similar to the case above due to the same intuition. However, since the

renegotiation cost c is high, the equilibrium switches directly to the no-covenant case, without going

through the pooling contract.

High y, low c In this scenario risk-taking is very costly (y is high), but preventing it is relatively nondis-

torting. As a result, over a large set of signal precision, all firms will be incentivized to play a = s.

High y, high c We get the same logic as above, but now covenants are more costly. As a result, the switch

to the no-covenant occurs at a lower level of noise. Also, the share of firms in the pooled contract that

risk-shift is higher.

Ultimately, the relationship between noise and the type of equilibrium is driven by the differential

effect of noise on the payoffs of the different kind of equilibria. The separating contract is all or nothing in

that it isolates the xa firm completely from the effects of risk-shifting. In other words, it will be preferred

when the noise level is low and when the costs of enforcing the covenant are low. As noise increases

15 In our numerical experiments we focus on single-peaked distributions of firm types. In the example we present, M(x) =(
x−xb
xb−xa

)β
, and the signal z has a linear density f(z, α|r) = 1−m(α)/2 +m(α)z.
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Fig. 3 Equilibrium analysis with respect to noise

the optimal contract shifts to pooling since there are benefits from preventing risk-taking by some of

the pooled firms. Finally, the expected costs of covenant violation are so large that the no-covenant

contract dominates. Interestingly, we find that contracts without covenants exist for high and low – but

not intermediate – levels of signal precision, in the first case since separation of different types of firms

is very effective, in the second case since the noise level is so high that no firm benefits from covenants.

4.3 Analytical solution

In this section, we explore a simple special case of the model that allows us to find an explicit solution to

the contract. First, we assume that the firm’s x is known (either M(x) is degenerate or the equilibrium
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is pooling and all firms act a = s.) Then, the firm chooses the action s if:

E[W ]− F (z̃|s)R− (1− F (z̃|s))D ≥ E[W ]− F (z̃|s)R− (1− F (z̃|s))D + x,

which is simplified to

(F (z̃|r)− F (z̃|s))(R−D) ≥ x. (13)

The bank’s break-even constraint now looks like

F (z̃|s)(R− c) + (1− F (z̃|s))D ≥ I. (14)

By the same arguments as in Lemma 7 we can show that all the constraints will be binding.

The second additional assumption that we make is regarding the distribution of the signal Z. As

we showed in Lemma 4, we can assume without loss of generality that the signal Z is defined on [0, 1]

and F (z|s) = z. We assume that F (z|r) is quadratic. In our model F (z|r) − F (z|s) has an inverted

U-shape with F (0|r)−F (0|s) = 0 and F (1|r)−F (1|s) = 0. Finally F (z|r) is increasing with F (0|r) = 0,

F (1|r) = 0. These constraints imply that the CDF F (z|r) has the form:

F (z|r) = z + (1− b)z(1− z)

with b ∈ [0, 1). Since F (z|r) − F (z|s) = (1 − b)z(1 − z), b corresponds directly to the noisiness of the

accounting signal. In other words, lower values of b indicate better accounting quality, while higher values

of b indicate relatively poorer accounting quality.

Substituting the functional form for F (z|a) in (13), we obtain

D = R− x

(1− b)z̃(1− z̃)
.

Using the expression above, we rewrite the break-even constraint (14) as:

R− z̃c− x

(1− b)z̃
≥ I. (15)

Since the break-even constraint is binding, the firm’s payoff in equilibrium turns out to be πf = E[W ]−

I − z̃∗c). Then clearly it is optimal to set z̃ as small as possible, so solving (15) with equality implies:

z̃∗ =
R− I −

√
(R− I)2 − 4xc

1−b

2c
,

and the firm’s payoff is:

πf = E[W ]− I −
R− I −

√
(R− I)2 − 4xc

1−b

2
.

Given this, we can easily calculate the loss from poor accounting quality (higher b):

dπf

db
= −

[
(R− I)2 − 4xc

1− b

]− 1
2 xc

(1− b)2
< 0
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and
d2πf

dbdx
= − c

(1− b)2

[
(R− I)2 − 4xc

1− b

]− 3
2
(
(R− I)2 − 2xc

1− b

)
< 0.

As expected, improving the quality of the signal (lower b) is beneficial for the firm since providing

incentives is cheaper. This benefit is greatest for firms with high x (incentive to risk-shift). Prior research

has documented that firm characteristics such as high leverage are associated with poor accounting

quality Dechow et al. (2010)). However, firms with high leverage also have greater incentives to risk-shift

Jensen and Meckling (1976)). This implication of our model suggests that it is precisely these firms that

would benefit most from committing to high accounting quality.

Next, we can turn to the relationship between noise and covenant tightness.

dz̃∗

db
=

x

(1− b)2

[
(R− I)2 − 4xc

1− b

]− 1
2

> 0

d2z̃∗

dbdc
=

2x2

(1− b)3

[
(R− I)2 − 4xc

1− b

]− 3
2

> 0

d2z̃∗

db2
=

2x

(1− b)3

[
(R− I)2 − 4xc

1− b

]− 3
2
[
(R− I)2 − 3xc

1− b

]
> 0.

All else being equal, firms with higher signal noise have tighter covenants. The intuitive argument

behind this result is that when the signal is more accurate at indicating action a = r, less strictness

is required to prevent risktaking. The effects of noise on optimal covenants increase with higher bank

covenant violation costs (and though unmodeled here, bankruptcy cost).

5 Model of Risk-shifting

In this section we present a richer model that derives the private benefit x of action a = r and the

lender cost y from primitives. To maintain tractability here we assume that there is no ex ante private

information, that is all firm characteristics, except the action it takes, are known.

The firm’s management takes an unobservable action a ∈ {r, s} which is the choice whether to conduct

business in a safe (s) or risky (r) manner. The effect of the action is to affect the distribution of the

cash flow W , which is described by the density function h(W |a) and the CDF H(W |a) and has support

[W,W ]. We focus on a traditional notion of risk-shifting – the expected value of cash flows (EW |a) is the

same for any choice of action, but the risky action increases volatility (in a manner to be made precise

below).16 Given this setup, as Merton (1974) points out, the equity claim is a call option with a strike

price equal to the face value of the debt, and thus it increases in the volatility of the underlying cash

flows. To make the risky action a = r socially undesirable, we allow for costly bankruptcy in the event

of a default. In what follows we model the incentives for risk-shifting more explicitly.

Let v(W ) ≡ h(W |r)/h(W |s) be the ratio of the two densities. We assume that v is strictly decreasing

on [W,W ∗) and strictly increasing on (W ∗,W ]. Thus, the risky action shifts the probability towards the

16 The value of preventing the risky action is strengthened if the risky action lowers the mean of cash flows in addition
to the increase in volatility.
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extremes. Then
∫W

W
Wh(W |r)dW =

∫W

W
Wh(W |s)dW implies that v(W ) > 1, v(W ∗) < 1 and V (W ) > 1.

Next, we collect some technical assumptions on the distribution W |a:

Assumption 4 The probability density function h(W |a) is continuously differentiable, h(W |a) > 0 for

all W ∈ [W,W ], a ∈ {r, s} and the hazard rate h(W |a)/(1 −H(W |a)) is strictly increasing in the cash

flow W .

We assume that the financial contract between the firm and the lender is in the form of debt. The

justification for this assumption is that it is costly to observe the cash flows (Townsend (1979)) or that

debt is necessary to provide incentives for the manager ( Jensen and Meckling (1976), Cole (2013) and

others).

In our framework bankruptcy is triggered if the random cash flow W falls below the debt value, D.

Bankruptcy is costly; for tractability we allow for fixed distress costs to the firm γf and to the bank γb.

In our model, we don’t consider covenant renegotiation costs directly and all the losses when covenants

are violated emerge from higher bankruptcy probability. Adding renegotiation costs will not affect, but

actually strengthen our results.

The last element of the model is the signal Z that is informative of the firm’s action. We maintain

all the assumptions made in Section 2.

5.1 Equilibrium without covenants

We start with exploring the incentives of the firm to risk-shift, and the net cost of risk-shifting. This

outcome will serve as a benchmark to examine the value added by covenants in the contract.

Let’s define EP (D, a) to be the expected payment from the firm to the bank. Since the cash flow has

a pdf h(W |a) and support [W,W ],

EP (D, a) =

∫ D

W

Wh(W |a)dW + (1−H(D|a))D.

The expected payment is affected by the debt level and the firm’s action. The firm’s payoff is:

πf (D, a) = EW − EP (D, a)−H(D|a)γf .

The bank’s net revenue is

πb(D, a) = EP (D, a)−H(D, a)γb.

What are the firm’s incentives for risk-shifting? The change of the firm’s payoff if it changes action

from s to r is given by

∆π(D) ≡ (EP (D, s)− EP (D, r))− (H(D|r)−H(D|s))γf .

The first term represents the gain of the option value coming from the increase in volatility and hence

is always positive; the second term corresponds to the increased probability of costly bankruptcy. The

optimal action for the firm, risky or safe, depends on which effect is stronger.
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As we show in the following lemma, the second term (an increase in bankruptcy costs) dominates the

first one when the face value of the debt D is small.

Lemma 5 There exist some cutoffs, D1 and D2, such that W < D1 < D2 and ∆π(D) < 0 if D ∈

(W,D1) and ∆π(D) > 0 if D ∈ (D2,W ].

Proof In Appendix A.

Under some additional conditions, the two cutoffs are the same: D1 = D2 ≡ Dr. The banks can

predict the behavior of the firm, so given the debt level the firm’s action is known. Let D̂(a) be the

minimum face value of the debt that is sufficient to ensure the bank breaks even, conditional on action

a: D̂(a) = min{D : πb(D, a) ≥ I}.

If the break-even payment conditional on the safe action is below the risk-shifting threshold, the

action a = s can be attained; otherwise risk-shifting will occur.

Proposition 10 The optimal contract is given by:

(a∗, D∗) =

 (s, D̂(s)) if D̂(s) ≤ Dr

(r, D̂(r)) Otherwise.

Proof In Appendix A.

What are the costs and benefits of risk-shifting? Let’s denote the firm’s gain from shifting from s to

r by x ≡ ∆π(D∗) = (EP (D∗, s) − EP (D∗, r)) − (H(D∗|r) − H(D∗|s))γf . Similarly, we can define the

cost to the bank by y ≡ πb(D, s)− πb(D, r) = EP (D∗, s)− EP (D∗, r) + (H(D∗|r)−H(D∗|s))γb.

The net cost of the risky action is then y−x = (H(D∗|r)−H(D∗|s))(γf +γb), which is the increase in

expected cost of distress. For some parameter values y < x, implying that the action r is efficient. When

the level of debt is high and bankruptcy is almost inevitable, the risky action reduces the likelihood of

bankruptcy since it increases the probability that the revenues will be high enough to avoid bankruptcy.

It is easy to show that if y− x < 0, then x > 0. In other words whenever the action r is efficient, the

firm will have an incentive to take it. In the rest of this article, we focus on the case that the action s is

efficient, but simple debt cannot attain it: y − x > 0, but x > 0.

5.2 Contract with financial maintenance covenants

In the earlier section we explored the details of risk-shifting with a debt contract without covenants.

Next, we introduce covenants in the same fashion as in Section 2.

Definition 7 A debt contract is a pair of base paymentD and a covenant trigger level z̃. If the realization

of the signal Z falls in the interval [za, z̃], the loan is renegotiated with the bank making a take-it-or-

leave-it offer.
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In our model, in the post-violation renegotiation the bank demands a new level of debt repayment

that maximizes its payoff. At this point, the bank’s first-order condition is given by

d

dD
πb(a,D) = −γbh(D|a) + (1−H(D|a)) = (1−H(D|a))

[
1− γb

h(D|a)
1−H(D|a)

]
= 0,

where h(D|a)/(1−H(D|a)) is the hazard rate of W . We restrict our analysis to cases where the hazard

rate is increasing, which is satisfied for most commonly used distributions (uniform, normal, truncated

normal, gamma). Hence the bank’s profit is strictly concave and is maximized at some level D(a)∗ < W ,

where a refers to the action that the firm took. Importantly, since the action a is unobservable, the bank

uses its belief of what the firm action was when renegotiating.17

Given this setup, the payoff of the firm with a contract (z̃, D), action a, and bank’s belief of the firm’s

action â is

F (z̃|a)πf (D
∗(â), a) + (1− F (z̃|a))πf (D, a)

In a pure strategies equilibrium, the firm’s action and the bank’s belief coincide, so we can write the

incentive constraint as

(F (z̃|r)− F (z̃|s))(πf (D, s)− πf (D
∗(s), s)) ≥ F (z̃|r)∆π(D∗(s)) + (1− F (z̃|r))∆π(D). (16)

The left-hand side is the cost of the action r to the firm: an increase in the probability of covenant

violation leads to a higher loan spread (cost of debt). The right-hand side is the weighted sum of the

benefits of risk-shifting, conditional on the debt level.

Next, we consider the bank’s break-even constraint. It is given by:

F (z̃|a)πb(D
∗(a), a) + (1− F (z̃|a))πb(D, a) ≥ I, (17)

where a is the equilibrium firm’s action (which coincides with the bank’s belief).

In what follows, we look at cases when we want to induce behavior a = s. The loan contract maximizes

the value of the firm subject to the incentive and break-even constraints.

max
z̃,D

F (z̃|s)πf (D
∗(s), s) + (1− F (z̃|s))πf (D, s), s.t.(16), (17).

Note that even though the “punitive” payment D∗(s), the new value of the debt if the covenant is

broken, affects the problem both directly and through the constraints, it cannot be chosen in advance:

it must be consistent with the bank’s incentives and beliefs. For some parameter values the firm’s value

is increased if the punitive payment is W , but this is not attainable.

Thus the financial maintenance covenant is beneficial in that it prevents inefficient risk-taking ex-ante.

Expectation of higher debt payment provides the incentive for the firm to take the safe action. However,

the increase in debt payment also leads to a higher probability of bankruptcy in the event of a covenant

violation. Thus, the covenant contract adds value when the first effect dominates the second.

17 We can also impose the restriction D ≤ D(s)∗, because the bank will unilaterally reduce D, that is a contract with
D > D(s)∗ is not renegotiation proof. As we will show, if D ≥ D∗(s), the incentive constraint can’t be satisfied, so
renegotiation-proofness follows from incentive compatibility.
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Lemma 6 Suppose that D̂(s) ≤ Dr. Then the optimal contract is without covenants: (∅, D̂(s)).

Proof In Appendix A.

Simply put, if the firm has an incentive to take the safe action, then even without any cost to writing

or enforcing covenants, they will not be used.

Next, we make two additional assumptions that greatly simplify the analysis, by implying that both

constraints are binding at the optimum.

Assumption 5 The cost of bankruptcy for the firm γf = 0.

The face value of the debt that satisfies break-even condition if there are no covenants, D̂(r) satisfies

D̂(r) ≤ W ∗.

The first part of the assumption states that all the costs of bankruptcy fall on the holders of debt (the

bank). Intuitively, this assumes that the previous owners of the firm get wiped out, the bank becomes

the new owner and any costs of bankruptcy reduce the bank’s payoff. The second part of the assumption

implies that the face value of the debt without covenants will not be so high so that reducing the debt

level increases the incentives for risk shifting.

Lemma 7 Suppose that D̂(s) > Dr and assumption 5 holds. Then the optimal contract that induces the

action a = s is with a covenant and the constraints (16) and (17) are binding.

Proof In Appendix A.

The following Lemma 7 simplifies the constraint set and is our main tool to providing comparative

statics results for the contract. Before doing so, we need the following technical assumption.

So far we have implicitly imposed the assumption that the financial maintenance covenant is broken

if the realization of the signal z falls below a certain threshold z̃. With this assumption, we can prove

that the optimal form of the covenant set is an interval: [za, z̃]. The proof is an extension of the proof of

the lemma above and is also in Appendix A.

Proposition 11 The optimal covenant tightness z̃∗ increases if (i) the loan amount I increases; (ii) the

bank’s cost of bankruptcy γb increases; (iii) there is a mean-preserving spread in the distribution of W |r.

Proof In Appendix A.

In cases (i) and (iii), the benefit of riskshifting increases, which necessitates a tighter covenant. In

case (ii) the maximum amount of extra spread D∗(s) the bank is willing to ask, is reduced because the

bank internalizes the extra cost of bankruptcy. As a result the incentives are weaker, requiring a tighter

covenant.
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6 Performance manipulation

If the firm has some control over the signal z then a bank loan with covenants written on z creates

an obvious incentive to manipulate the accounting signal. How does the optimal contract change when

we consider the possibility of manipulation? In this section, we extend our model to allow for strategic

misreporting.

The extension uses the setting with known firm type x introduced in Section 4.3. We make one addi-

tional assumption. With probability m, after the signal z is realized, the firm can choose to manipulate,

that is report a value of the signal z of its own choosing.18

The firm’s management may be unable to manipulate due to the strength of internal controls; similarly

it may be unwilling to manipulate due to legal concerns or the fear of being found out and suffering

reputation damage, or enforcement action by a regulator. Intuitively, 1 −m is an index of the strength

of these forces.

Let’s suppose that the contract has a covenant. If the signal realization is above the cutoff z̃, the firm

has no incentive to misreport. On the other hand, if the signal z falls below the cutoff, the firm will want

to misreport, given the opportunity, even if it took the safe action. In this case, the exact value of the

report z is not pinned down, but the report will be equal to or exceed z̃.

From the firm’s optimal reporting strategy it follows that the incentive constraint now looks like:

E[W ]− F (z̃|s)(1−m)R− (1− F (z̃|s))D −mF (z̃|s)D ≥

E[W ]− F (z̃|r)(1−m)R− (1− F (z̃|r))D −mF (z̃|r)D + x,

Straightforward rearranging of the constraint above yields:

(1−m)(F (z̃|r)− F (z̃|s))(R−D) ≥ x, (18)

while the lender’s break-even constraint is:

D + (1−m)F (z̃|s)(R−D − c) ≥ I. (19)

As we discussed above, if the firm manipulates, it is indifferent between reports on the interval [ẑ, zb].

Inspecting the constraints above, we can see that without loss of generality we can assume that the

report is zb. In this case, manipulation induces a distribution of reported z exactly the same as from

the random errors model of noise from Section 4.1.2. Thus the ability to manipulate is isomorphic to a

particular kind of noise.

Proposition 12 Suppose that for some m > 0 the optimal contract is with a covenant. There exists a

cutoff level of manipulation probability m̄ ∈ (0, 1), such that the optimal contract is with covenants for

18 Laux (2022) uses a similar information structure. An alternative approach is to allow manipulation, but make it costly.
This is explored by Guttman and Marinovic (2018). In principle, we can also consider the size of the possible reporting
manipulation (nudging z just a little bit over the cutoff value may be easier than manipulating a lot). The model can be
extended so that, in addition to m, the firm is characterized by the parameter a, which is the maximum amount the firm
is able and willing to manipulate the signal z. The results, in this case, will be substantially similar, so we abstract from
this complication.
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m ∈ [0, m̄) and without covenants for m ∈ (m̄, 1]. Over [0, m̄), the optimal z̃ and (1−m)z̃ are increasing

in m.

Proof In Appendix A.

Overall, our findings in this section confirm the similarity of the manipulation channel to noise. In

particular, when the manipulation probability is large, the observed signal becomes so uninformative

that covenants lose value. However, just as noise is not infinite, manipulation is neither unlimited nor

cost-free. Covenants add value (and will be used) for sufficiently low values of m. The cutoff value z̃

increases with m (since providing incentives is now harder). Moreover, this cutoff value is increased

enough so that the probability that the covenant will be binding increases, despite the fact that the firm

can manipulate the signal, in parallel to the result on noise (proposition 8).

7 Conclusion

The existing theoretical literature on the design of debt covenants has focused to a large extent on their

role in signaling borrower’s type and the nature of the ex-post investment, allowing control rights, and

providing incentives to the financial intermediary to monitor the borrower. In this article, we focus on the

design of financial maintenance covenants in debt contracts under moral hazard and adverse selection.

We incorporate asymmetric information along three dimensions: the firm’s type, the firm’s unobservable

action, and the relationship between the accounting signal and the firm’s action.

We show that financial maintenance covenants based on accounting ratios help decrease moral hazard,

and that their signaling role is not a necessary condition for their existence. Our model can character-

ize optimal covenants as a function of the firm’s incentive to risk shift, the debt amount, the cost of

renegotiation, and more importantly, and accounting quality (or noise in the public signal).

In our analysis, we pay particular attention to this latter variable, as technical default of the financial

maintenance covenant is based on the actual value of the accounting signal generated by the firm. In

an environment where accounting signals (financial ratios) are often estimated with error and subject

to manipulation, we find that the extent of noise in the accounting signal changes the nature of the

equilibrium contract and has a profound impact on covenant design. Specifically, we find that increasing

the level of noise moves the equilibrium from pooling to separating, and has a non-monotone effect

on covenant strictness. As accounting signals become noisier (i.e. accounting quality reduces), covenant

strictness increases to maintain the correct incentives for the borrower. However, for a large enough level

of noise there is an abrupt reversal and the optimal contract has no covenants.

We conclude by discussing the role of the simplifying assumptions in our model. The first issue is with

respect to risk-neutrality. If the firm faces future credit constraints, then the value it will place on current

cash flows will be nonlinear. Moreover, the value of risk-shifting x will depend on the firm’s net cash flows.

Formally, this model would be isomorphic to a costly state verification model with errors. Additionally,

there will be a trade-off between risk-sharing (which would minimize the variance of payments) and

incentives (which would maximize them). The optimal contract will therefore imply more renegotiation
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and smaller changes in terms of the contract. However, risk aversion does not eliminate the necessity of

providing incentives, hence the mechanism central to our study is still in action.

A second question concerns the renegotiation process. In our model the constraints on the bank’s

renegotiation strategy are encapsulated by R - the maximum amount that can be extracted after a

covenant violation. Since we do not consider repeated interaction, the bank’s best response is to extract

all it can. Ultimately R is derived from the option of the firm to refinance its debt with a new lender.

So R depends on the cost of switching lenders and will be affected by size of the firm, the relative

disadvantage of new lenders (due to the incumbent lender’s familiarity with the firm), and the degree of

competition between banks. Higher ex-post competition will reduce the power of the contract to provide

incentives. Similar results have been derived in other contracting environments, such as by Krueger and

Uhlig (2006). We explore this issue in Appendix B.

Third, if we explicitly model the duration of the loan, then some of the details of incentive provision

will change. In particular, the need for continuing financing may moderate the firm’s incentive to risk-

shift. In addition, profits from a continuing relationship may also benefit the bank which implies that they

will be more lenient in renegotiation, worsening incentives ex-ante. Since these issues do not change the

basic mechanism of financial covenants that we explore in this paper, we leave them for future research.

Lastly, the terms of the contract may also be conditioned on public information about conditions

affecting the firm’s industry or the macroeconomy. In economic downturns firm-level variables become

more volatile, so they are probably less informative of its private information. Hence, an optimal state-

contingent covenant should be less tight during recessions. On the other hand, the lender may optimally

want to be more conservative in recessions. We consider the question why loan covenants do not have

stage contingency an interesting open question for additional research.
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Gârleanu, Nicolae and Jeffrey Zwiebel (2009), ‘Design and renegotiation of debt covenants’, The Review

of Financial Studies 22(2), 749–781.

Hyde, Caroline (2008), ‘Barclays dickers on waiver as europe stems writedowns’,

https://www.bloomberg.com/news/articles/2008-12-02/barclays-dickers-on-waiver-as-europe-stems-

writedownsxj4y7vzkg. Accessed: 2022-09-20.

Jensen, Michael C. and William H. Meckling (1976), ‘Theory of the firm: Managerial behavior, agency

costs and ownership structure’, Journal of Financial Economics 3(4), 305–360.

Kiyotaki, Nobuhiro and John Moore (1997), ‘Credit cycles’, Journal of Political Economy 105(2), 211–

248.

Krueger, Dirk and Harald Uhlig (2006), ‘Competitive risk sharing contracts with one-sided commitment’,

Journal of Monetary Economics 53(7), 1661–1691.

Laux, Volker (2022), ‘Debt covenants and accounting manipulation’, The Accounting Review 97, 293–314.

Lobo, Gerald J. and Yuping Zhao (2013), ‘Relation between audit effort and financial report misstate-

ments: Evidence from quarterly and annual restatements’, The Accounting Review 88(4), 1385–1412.

Luenberger, David (1969), Optimization by Vector Space Methods, John Wiley and Sons, New York, NY.

Merton, Robert C. (1974), ‘On the pricing of corporate debt: The risk structure of interest rates’, The

Journal of Finance 29(2), 449–470.

Milgrom, Paul R. (1981), ‘Good news and bad news: Representation theorems and applications’, The

Bell Journal of Economics 12(2), 380–391.

Miyazaki, Hajime (1977), ‘The rat race and internal labor markets’, The Bell Journal of Economics

8(2), 394–418.

Netzer, Nick and Florian Scheuer (2014), ‘A game theoretic foundation of competitive equilibria with

adverse selection’, International Economic Review 55(2), 399–422.

Rajan, Raghuram and Andrew Winton (1995), ‘Covenants and collateral as incentives to monitor’, The

Journal of Finance 50(4), 1113–1146.

Rajan, Raghuram G. (1992), ‘Insiders and outsiders: The choice between informed and arm’s-length

debt’, The Journal of Finance 47(4), 1367–1400.

Roberts, Michael R. and Amir Sufi (2009a), ‘Control rights and capital structure: An empirical investi-

gation’, The Journal of Finance 64(4), 1657–1695.

Roberts, Michael R. and Amir Sufi (2009b), ‘Renegotiation of financial contracts: Evidence from private

credit agreements’, Journal of Financial Economics 93(2), 159–184.

Rothschild, Michael and Joseph Stiglitz (1976), ‘Equilibrium in competitive insurance markets: An essay

on the economics of imperfect information’, The Quarterly Journal of Economics 90(4), 629–649.



34 Redouane Elkamhi et al.

Shanthikumar, J.George and David D. Yao (1986), ‘The preservation of likelihood ratio ordering under

convolution’, Stochastic Processes and their Applications 23(2), 259–267.

Smith, Clifford W. and Jerold B. Warner (1979), ‘On financial contracting: An analysis of bond

covenants’, Journal of Financial Economics 7(2), 117–161.

Townsend, Robert M (1979), ‘Optimal contracts and competitive markets with costly state verification’,

Journal of Economic Theory 21(2), 265–293.

Vance, David (2005), Raising Capita, Springer Science and Business Media, New York, NY.

Wilson, Charles (1977), ‘A model of insurance markets with incomplete information’, Journal of Eco-

nomic Theory 16(2), 167–207.

Yu, Fan (2005), ‘Accounting transparency and the term structure of credit spreads’, Journal of Financial

Economics 75(1), 53–84.



Financial Maintenance Covenants in Bank Loans 35

A Proofs

We prove 2 technical results first.

Lemma A.1 Let A be any Borel-measurable set A ⊆ [za, zb]. Define set A′ = [za, z′], where z′ is the unique solution of

the equation F (z′|s) = Prob(A|s). Then for all positive constants k1, k2, k1Prob(A′|r) − k2Prob(A′|s) ≥ k1Prob(A|s) −

k2Prob(A|r). Moreover, if Prob(A△A′|s) > 0, then the inequality is strict.

Proof Consider the problem:

sup
m(z)

∫ zb

za

m(z)[k1f(z|r)− k2f(z|s)]dz

m(z) ∈ [0, 1],m(z) is a measurable function

A necessary condition for this problem is that the Gateaux derivative satisfies:

k1f(z|r)− k2f(z|s)]


≥ 0 if m(z) = 1

= 0 if m(z) ∈ (0, 1)

≤ 0 if m(z) = 0.

Then m(z) = 1 if g(z) > k2/k1 and m(z) = 0 if g(z) < k2/k1. MLRP implies that m(z) = 1 for z ∈ [za, ẑ) and m(z) = 0

for z ∈ (ẑ, zb], where g(ẑ) = k2/k1 is unique.

There will be three cases to consider, depending on the relationship of Prob(A|s) and F (ẑ|s).

First, assume that Prob(A|s) < F (ẑ|s). We consider the following problem:

sup
m(z)

∫ zb

za

m(z)[k1f(z|r)− k2f(z|s)]dz

subject to

∫ zb

za

m(z)f(z|s)dz ≤ Prob(A|s)

m(z) ∈ [0, 1],m(z) is a measurable function.

If we add the constraint that m(z) ∈ {0, 1}, we will be looking at the set A′ that maximizes k1Prob(A′|r)− k2Prob(A′|s),

subject to the constraint. We show that at the optimum m(z) is either 1 or 0.

This is a convex programming problem with a nonempty, open constraint set, so by Theorem 1 in Luenberger (1969),

page 217, there exists some λ ≥ 0 such that the optimal solution maximizes:

L(m(z), λ) =

∫ zb

za

m(z)[k1f(z|r)− k2f(z|s)]dz − λ

∫ zb

za

m(z)f(z|s)dz.

λ = 0 is impossible, since it would be then optimal to set m(z) = 1 a.s. if z ≤ ẑ and zero otherwise, so the constraint

cannot be satisfied.

We take Gateaux derivatives, and we know that necessary conditions for optimality are the following:

Dm(z)L(m(z), λ) = k1f(z|r)− k2f(z|s)− λf(z|s)


≥ 0 if m(z) = 1

= 0 if m(z) ∈ (0, 1)

≤ 0 if m(z) = 0.

MLRP implies that either Dm(z)L > 0 for all z ∈ [za, zb), Dm(z)L < 0 for all z ∈ (za, zb], or Dm(z)L > 0 for all

z ∈ [za, z′) and Dm(z)L < 0 for all z ∈ (z′, zb]. The first case is inconsistent with the constraint; the second case

contradicts the assumption for Prob(A). So at the optimum m(z) = 1 for z ∈ [za, z′) and m(z) = 0 for z ∈ (z′, zb]. The

condition that F (z′|s) = Prob(A|s) follows from the binding constraint. This proves the statement for all sets A such that

Prob(A′|s) < Prob([za, ẑ]|s).

When Prob(A|s) > F (ẑ|s), the proof is handled similarly, but the constraint is
∫ zb
za

m(z)f(z|s)dz ≥ Prob(A|s). Finally,

in the case of inequality, we solve the unconstrained problem.
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The last part of the proof follows from the fact that a necessary condition for the maximization is that the condition

above holds a.s.

Lemma A.2 Suppose that the firm type x is known and that the action recommendation is a = s. If the constraint set is

nonempty, there exists an optimal contract. Moreover, at the optimum, A = [za, z∗], D = R− x/[F (z∗|r)− F (z∗|s)], and

z∗ is the smallest z such that R− (1− F (z|s))x/[F (z∗|r)− F (z∗|s)] ≥ I + F (z|s)c. At the optimum, the inequality binds.

Proof The proof is in 4 steps.

1. Without loss of generality, we impose the additional restriction that A = [za, z̃] for some z̃.

Take any contract that satisfies incentive compatibility and bank’s break-even condition. Then by lemma A.1, if we set

A′ = [za, z′] where F (z′|s) = Prob(A|s), the expected payment by the firm is the same as before, the bank still breaks

even, and the incentive constraint is (weakly) strengthened. Rewriting the incentive constraint for A = [za, z̃], we get

the following form of the incentive constraint:

(D∗ −D)[F (z|r)− F (z|s)]− x ≥ 0.

2. The incentive constraint is binding.

Take an arbitrary contract ([za, z̃], D) such that the incentive constraint is not binding. Define D(z) implicitly by:

F (z|s)D∗ + (1− F (z|s))D(z) = F (ẑ|s)D∗ + (1− F (ẑ|s)D.

D(z) is well-defined and strictly decreasing in z. Define v(z) by:

v(z) = (D∗ −D(z))[F (z|r)− F (z|s)]− x.

The contract ([za, z], D(z)) will be incentive-compatible if and only if v(z) ≥ 0. By assumption v(ẑ) > 0 and v(0) =

−x < 0. v is continuous, so z̃′ = min{z : v(z) ≥ 0} is well-defined. The contract ([za, z̃′], D(z̃′)) satisfies incentive

compatibility, keeps the firm as well off as before and relaxes the break-even constraint.

3. The break-even constraint is binding. From 1 and 2, we know that A = [za, ẑ] and D = D∗ − x/[F (z̃|r)− F (z̃|s)]. Let

v2(z) be the expected payment by the firm, and v3(z) be the expected profit by the bank:

v2(z) = D∗ − (1− F (z̃|s))
x

F (z̃|r)− F (z̃|s)

v3(z) = v2(z)− I − F (z̃|s)c.

Assume that for some contract v3(ẑ) > 0. Clearly, limz→za v2(z) = −∞, therefore limz→za v3(z) = −∞. Then from

continuity of v3 for some z′ ∈ (za, ẑ), v3(z′) = 0. If v2(z′) ≥ v2(z̃), then v3(z′) > v3(z̃) > 0; so v2(z′) < v2(z̃). Thus

we reduced the firm’s expected payment and kept all the constraints, which is a contradiction.

4. There exists some ẑ > za such that R− x(1− F (z|s))/[F (z|r)− F (z|s)] < I + F (z|s)c for all z ∈ (za, ẑ].

Clearly limz→za (1 − F (z|s))/[F (z|r) − F (z|s)] = ∞, so there exists some ẑ such that for all za < z ≤ z̃, (1 −

F (z|s))/[F (z|r) − F (z|s)] > (R − I)/x. Then clearly for all za < z ≤ ẑ, R − x(1 − F (z|s))/[F (z|r) − F (z|s)] < I <

I + F (z|s)c.

5. An optimum contract exists if the constraint set is nonempty.

In part 3 of the proof, we show that if a contract does not satisfy the break-even condition, then we can strictly

reduce the firm’s expected payment. If a contract does not satisfy 1 or 2, then we can find a variation that relaxes the

break-even condition and keeps the firm’s payment constant; since this implies that further modification of the contract

will reduce the firm’s expected payment this is a contradiction. Therefore 1 and 2 are necessary conditions. Then 1, 2,

and 3 imply that A = [za, z̃], D = R− x/[F (z̃|r)− F (z̃|s)], and z̃ is such that v3(z) = 0.

Condition 3 implies that expected payment by the firm is I +F (z̃|s)c, so it is optimal to choose the lowest z̃ such that

v3(z̃) = 0. Condition 4 implies that such smallest z̃ exists.
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Lemma A.3 For any z ∈ [za, zb],
1− F (z|s)

f(z|s)
≥

1− F (z|r)
f(z|r)

and the inequality is strict if z ̸= zb.

Proof For any z, we have that

1− F (z|s) =
∫ zb

z
f(w|s)dw =

∫ zb

w
f(w|r)

f(w|s)
f(w|r)

dw ≥
∫ zb

z
f(w|r)

f(z|s)
f(z|r)

dw = (1− F (z|r))
f(z|s)
f(z|r)

.

(The inequality follows from the fact that z satisfies MLRP.) Strict MLRP implies that the inequality is strict if z < zb.

Rearranging, we get the desired result.

Proof (Proof of Proposition 1)

Suppose that x̂ > xa. Let x < x̂. Then by definition of supremum there exists x′ ∈ (x, x̂] such that firm with x′ (weakly)

prefers playing s. Let pf(x, a) be the optimal payoff for a firm of type x with action a. Since

pf(x, r) = x− x′ + pf(x′, r) < pf(x′, r) ≤ pf(x′, s) = pf(x, s),

firm x strictly prefers action s. So all firms with x ∈ [xa, x̂) prefer action s.

On the other hand, suppose that x̂ < xb. By definition no firm with x > x̂ prefers s weakly, therefore all firms with

x ∈ (x̂, xb] prefer action r. This proves claim 1 of the proposition.

Suppose x̂ = xa and an equilibrium exists. If we add the contract (∅, I + y), it will break even no matter what kind

of firms take it up. For any contract, almost all firms that take it up will risk-shift. Then the expected payment from the

contract must be greater or equal to I + y. Then the only contract taken up by a positive mass of firms will have expected

payment of I + y. Finally, such a contract will break even only if there is no covenant.

Now suppose that x̂ = xb. By individual rationality, expected payment when playing s must be equal among all

contracts taken up by firms. Suppose that for one of those contracts and some x∗ < xb playing r is weakly preferred. Then

all firms with x ∈ (x∗, xb] will strictly prefer to take up this contract and play r. This contradicts the assumption that

x̂ = xb. So all equilibrium contracts provide incentives for firms with xb to play s and break even. The optimal contract

that satisfies those restrictions is derived in Lemma A.2.

Proof (Proof of lemma 1) Suppose (A,D) satisfies the constraints. Define z̃ by F (z̃|s) = Prob(A|s). By lemma A.1,

switching to contract ([za, z̃], D) does not affect the objective function and (5) and (weakly) strengthens (6).

Next, we show that if one or both of the constraints are slack, there is a variation that will increase the objective

function.

1. z̃ < zb.

If, on the contrary, z̃ = zb, the contract ([za, z], 0) will satisfy all the constraints for some z sufficiently close to zb and

it will increase the objective function.

2. Assume both constraints are slack. Then we can reduce D until some constraint binds and lower the objective function.

3. Assume that (6) is slack and (5) is binding. z̃ = za will be impossible, since then (5) will be slack. Then it will be

possible to reduce z̃ and change D in a way to keep both the constraints satisfied. From the binding (5) constraint, it

follows that the objective function is R− I − F (z̃|s)c. Then the objective function will be increased by the variation.

4. Finally, assume that (5) is slack and (6) is binding. Consider increasing z and decreasing D. From the implicit function

theorem applied to (6), we get that:
dD

dz̃
= −

f(z̃|r)(D∗ −D)

1− F (z̃|r)
.

Then the change in expected payment from this variation is given by:

(D∗ −D)

[
f(z̃|s)−

1− F (z̃|s)
1− F (z̃|r)

f(z̃|r)
]
.
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We know that D ≤ D∗ and that D = D∗ is impossible (both constraints would be slack), therefore D∗ − D > 0.

Lemma A.3 implies that the expression in the parenthesis is negative. Therefore this variation reduces the expected

payment.

The objective function is clearly continuous in D and z̃. To show the existence of an optimum it is sufficient to show that,

without loss of generality, we can restrict z,D to a compact set. From (5) and (6), we can ensure that

D ≥ h(z̃) = max

{
I + F (z̃|s)c− F (z̃|s)D∗

1− F (z̃|s)
,

I + y

1− F (z̃|s)

}
.

From (6), and plugging in the objective function, we get that:

F (z̃|s)D∗ + (1− F (z̃|s))D ≥ R[F (z̃|s)− F (z̃|r)] +
1− F (z̃|s)
1− F (z̃|r)

(I + y) ≥ D∗[F (z̃|s)− F (z̃|r)] +
f(z̃|s)
f(z̃|r)

(I + y).

It follows that for z̃ sufficiently large, call it z1, (5) will not be binding. However, we showed that if (5) is not binding, we

can find a new allocation in which the constraints are binding and the objective function is reduced. Then without loss of

generality, we can set the constraint set to be

M = {(z̃, D) : z̃ ∈ [za, z1], D ∈ [h(z̃), D∗], (5), (6) are satisfied.}

M is clearly compact, so P1 has a minimum. Moreover, at the minimum, the constraints cannot be slack, because we would

be able to reduce the objective function if they were not.

Finally, assume that (z̃, D) and (z̃′, D′) are both solutions of the problem. Since all the constraints are binding, the

value of the objective function is I − F (z̃|s)c, so z̃ = z̃′. Since all the constraints are binding and strictly monotone in D,

then D = D′. Therefore the solution of the problem is unique.

Now we introduce two technical lemmas for the proof of lemmas 2 and 3.

Lemma A.4 Consider the problem P2′:

inf
m(z)

D + (D∗ −D)

∫ zb

za

m(z)f(z|s)dz (A.20)

subject to

∫ zb

za

m(z)(f(z|r)− f(z|s)) =
x̂

D∗ −D
(A.21)

−D − (D∗ −D)

∫ zb

za

m(z)f(z|s)dz − a2x̂ ≤

−I − ya2 − c

∫ zb

za

m(z)[a1f(z|s) + a2f(z|r)]dz −K (A.22)

0 ≤ m(z) ≤ 1. (A.23)

where, a1, a2, D, D∗ and K are some constants such that a1 ≥ 0, a2 ≥ 0, D∗ −D > 0 and the problem is feasible. Then

at the optimum m(z) = 1 for z ∈ [za, z̄) for some z̄ and m(z) = 0 for z ∈ (z̄, zb] for some z̄.

Proof As in lemma A.1, we can form the Lagrangian and take the first-order condition. If λ is the multiplier to the first

constraint and µ to the second, we have:

D∗ −D − µ(D∗ −D − ca1) + (cµa2 + λ)g(z)− 1


≤ 0 if m(z) = 1

= 0 if m(z) ∈ (0, 1)

≥ 0 if m(z) = 0.

If cµa2 + λ ≤ 0, then m(z) = 1 for z ∈ (z̄, zb] (for some z̄) and m(z) = 0 for z ∈ [za, z̄), which contradicts the incentive

compatibility constraint. Then cµa2 + λ > 0, so m(z) = 1 for z ∈ [za, z̄) and m(z) = 0 for z ∈ (z̄, zb] .
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Lemma A.5 For the auxiliary problem P2X:

p2(x̂,K) = inf
A,D

Prob(Ac|s)D + Prob(A|s)D∗

subject to [Prob(A|r)− Prob(A|s)](D∗ −D) = x̂

D + [M(x̂)Prob(A|s) + (1−M(x̂))Prob(A|r)](D∗ −D − c) ≥

I + y[1−M(x̂)] +K

the solution is of the form A = [za, z̃], D = D∗ − x̂/[F (z̃z|r)− F (z̃|s)] and z̃ is the smallest z solving the equation:

D∗ − x̂
1− F (z̃|s)

F (z̃|r)− F (z̃|s)
= I + (y − x̂)[1−M(x̂)] + c[M(x̂)F (z̃|s) + (1−M(x̂))F (z̃|r)] +K,

the solution contract minimizes the payment of the safe-playing firm, subject to the incentive constraint and the condition

that the bank makes a profit of at least K.

Proof If we set a1 = M(x̂) and a2 = 1−M(x̂), then lemma A.4 shows that for any feasible D it is optimal to set A = [za, z̃].

Plugging in the incentive constraint and rearranging:

inf
z̃,D

(1− F (z̃|s))D + F (z̃|s)D∗

subject to [F (z̃|r)− F (z̃|s)](D∗ −D) = x̂

D + F (z̃|s)(D∗ −D) ≥

I + (y − x̂)[1−M(x̂)] + c[M(x̂)F (z̃|s) + (1−M(x̂))F (z̃|r)] +K

Then from the incentive constraint we immediately see that D = D∗−x̂/[F (z̃|r)−F (z̃|s)]. Plugging this in the objective

function:

v(z̃) = D∗ − x̂
1− F (z̃|s)

F (z̃|r)− F (z̃|s)

v′(z̃) = x̂
f(z|r)[1− F (z|s)]− f(z|s)[1− F (z|r)]

[F (z̃|r)− F (z̃|s)]2
> 0

where the last inequality follows from lemma A.3 . So, the objective function is strictly decreasing if we decrease z̃. It is

easy to show that for z̃ low enough the last constraint will not be satisfied, so it must be binding at the optimum. Finally,

from the continuity of the constraint function, it follows that the set of z̃ such that the constraint is satisfied is compact,

so the minimum is attained.

Proof (Proof of Lemma 2) Assume that there are n contracts in equilibrium, taken up by a positive mass of firms.

From individual rationality it follows that Prob(Ai|s)R + Prob(Ac|s)Di is the same for all i = 1, 2, . . . n and similarly for

Prob(Ai|r)R+Prob(Ac|r)Di. Again individual rationality implies that all firms with x < x̂ = [Prob(Ai|r)−Prob(Ai|s)](R−

Di) will choose the action s and all firms with x > x̂ will choose r.

Suppose that Prob(Ai|s)R+Prob(Ac
i |s)Di > p2(x̂, 0). By continuity, for small enough ϵ > 0, p∗2(x̂, ϵ) < Prob(Ai|s)R+

Prob(Ac
i |s)Di. Moreover, expected payment for firms who play r in the alternative contract will be: p2(x̂, ϵ) + x̂ <

Prob(Ai|r)R + Prob(Ac
i |r)Di. So the new contract is strictly preferred by all firms and gives profit ϵ > 0 to the bank,

which is a contradiction. Therefore Prob(Ai|s)R+ Prob(Ac
i |s)Di ≤ p2(x̂, 0).

Define µi = Prob(Bi ∩ (x̂, xb])/Prob(Bi). µi is the fraction of risk-taking firms to total number of firms that take up

contract i. Let µj be the largest µi. Clearly µj ≥ 1 − M(x̂). If µj > 1 − M(x̂), then contract j satisfies the constraints

for P2 with K = 0, but the unique optimal solution for P2 with K = 0 does not satisfy the break-even conditions for

contract j, so we get that p3(x̂, 0) < Prob(Ai|s)R+Prob(Ac
i |s)Di, which as we showed is impossible. Then it must be that

µi = 1 − M(x̂) for all i. If for some i the contract differs from the solution to P2, since the solution to P2 is unique, we

must have p3(x̂, 0) < Prob(Ai|s)R+ Prob(Ac
i |s)Di, so again we reach a contradiction.

Therefore the only contract on offer is the solution to P2X with K = 0.
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Proof (Proof of Lemma 3) The claim that (9) binds and A = [za, z̃] follow from Lemma A.5.

If xa > 0, there exists some z1 such that if z < z1, R− xa(1− F (z|s))/H(z) < I. Then for all x ∈ [xa, xb], if z < z1:

R− x
1− F (z|s)

H(z)
≤ R− xa

1− F (z|s)
H(z)

< I + (y − x)[1−M(x)] + c[M(x)F (z|s) + (1−M(x))F (z|r)]

Then for all x such that z(x) exists, z(x) ≥ z1. Let M = {x ∈ [xa, xb] : Pooling contract exists for x}. For brevity let’s

denote z2 = sup{z(x) : x ∈ M}.

By hypothesis, M ̸= ∅. Let xi, i = 1, 2, . . . , xi ∈ D be an arbitrary sequence in M . Then the sequence of tu-ples

(xi, z(xi)) ⊆ [xa, xb] × [z1, z2] must have a convergent subsequence with limit (x∗, z∗) ∈ [xa, xb] × [z1, z2]. If we show

that z∗ satisfies the constraint for x∗ , then x∗ ∈ M and therefore M is compact. But this follows from the fact that the

constraint function is continuous and z2 < zb. The payoff function p2(x, 0) is continuous by the maximum theorem. Then

by Weierstrass extreme value theorem, a maximum exists.

Proof (Proof of Theorem 1) Suppose that v∗s ≥ v∗p , v
∗
s ≥ v∗r and that the optimal separating contract is on offer. Suppose

that it is possible to add a finite number of contracts that all remain in the surviving contracts set. By construction, the

old contracts still break even, so they are in the surviving contracts set. Suppose that the new allocation is separating.

Since the old contract maximizes the utility of the firms playing s and is still on offer, the new contract must be taken only

by firms playing r. Then break-even constraint implies that the new contract is D = I + y. However, this contract already

exists. Suppose that the new allocation is pooling. If this is the optimal pooling contract, then the bank cannot make a

profit on it, by construction. If it is not the optimal pooling contract, then all the firms in [xa, x̂] will strictly prefer the old

contract, which contradicts the assumption.

Now suppose that v∗p ≥ v∗r , v
∗
p ≥ v∗r and that the optimal pooling contract is on offer. Suppose that it is possible to

add a finite number of contracts that all remain in the surviving contracts set. The new allocation cannot be separating for

the same reason as in the case of separating equilibrium. Suppose that the new contract is pooling. All firms [xa, x̂) will

strictly prefer the old contract. Then as shown in Lemma 2, no other contract can be taken up by a positive mass of firms.

The case when the equilibrium is risk-taking and v∗r ≥ v∗p , v
∗
r ≥ v∗s is similar to the two cases above.

Proof (Proof of Proposition 2) Let (z̃∗, D∗) be the solution to P1 and x̂∗ = y−F (z̃∗|s)c. We will prove the first statement

by contrapositive; that is, we will show that if x̂∗ /∈ [xa, xb], then the equilibrium is not separating. First, suppose that

x̂∗ < xa. In this case all firms strictly prefer the contract (∅, I + y), so the contract is pooling.

Second, assume that x̂∗ > xb. Let z̃(x) be the optimal covenant in the case when there is no adverse selection. We

know that z̃(x) is strictly increasing. Since the contract (z̃∗, R,D∗) satisfies all the constraints of the no-adverse selection

contract for x∗, we have that z̃∗ ≥ z̃(x∗) > z̃(xb). Then a contract derived from the no-adverse selection case with x = xb

will be preferred by all firms, who will take the action s.

Finally, suppose that x̂∗ ∈ [xa, xb] and the equilibrium is separating. We showed that the firms taking action s must

have contract (∅, R, I + y). Suppose that the contract (z̃, R,D) differs from (z̃∗, R,D∗). The contract (z̃, R,D) satisfies

the constraints to P1 - (5) and (6). Since problem P1 has a unique solution, this implies that the contract (z̃, R,D) gives

strictly lower payoff for firms x ∈ [xa, x̂∗). So for some ϵ > 0 small enough, the contract (z̃∗, R,D∗ + ϵ) will be taken up by

a positive mass of firms and is strictly profitable, which is a contradiction.

Proof (Proof of Proposition 3)

Define f(y, I, c, z) = R− 1−F (z|s)
H(z)

[y−F (z|s)c]− I −F (z|s)c. The separating contract will be feasible if f(y, I, c, z) ≥ 0

for some z ∈ (za, zb). f is strictly decreasing in I and y and strictly increasing in c and for any fixed y, I, c, such that y > 0,

limz→za f(y, I, c, z) = −∞.

Fix y > 0, c and I and suppose that I′ > I and z̃′ and z̃ are the respective solutions of problem P1. We want to

show that z̃′ > z̃. Suppose not, z̃′ ≤ z̃. Then f(I′, z̃) > f(I, z̃) ≥ 0. Then by continuity there exists some z̃′′ < z̃ ≤ z̃′

such that f(I′, z̃′′) ≥ 0, which contradicts the assumption that z̃′ is optimal. Therefore, z̃′ > z̃. Then x̂′ = y − F (z̃|s)c <

y − F (z̃|s)c = x̂. The proof that z̃ is increasing in y is the same.
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Now consider c. Suppose that c′ > c. Since f is strictly decreasing in c, the argument above shows that z̃′ < z̃

A reduction in c, relaxes the constraints of problem P1 and therefore will lower the objective function. Since all the

constraints are binding at the optimum, the objective function is lowered strictly, so I + F (z̃′|s)c′ > I + F (z̃|s)c, which

immediately implies that x̂′ = y − F (z̃′|s)c′ < y − F (z̃|s)c = x̂.

Proof (Proof of Lemma 4) First, we prove the following claim.

Suppose that h(x) is strictly increasing and continuously differentiable function, Z satisfies the assumptions in the

paper. Then Y = h(Z) satisfies the assumptions in the paper. Moreover, the equilibria in economies with signals Z and Y

are equivalent.

Proof of claim The last statement follows from the fact that Prob(z ∈ A|a) = Prob(y ∈ h(A)|a) and Prob(y ∈

A|a) = Prob(z ∈ h−1(A)|a) for all Borel sets A. Then any contract (A,D) with signal X has identical payoffs to contract

(h(A), D) and signal Y .

FY (y|a) = Prob(Y ≤ y|a) = Prob(Z ≤ h−1(y)|a) = FZ(h−1(y)|a). Then the support of the signal Y is [h(xa), h(xb)].

FY is differentiable with derivative

fY (y|a) = fZ(h−1(y)|a)
1

h′(h−1(y))

Finally,
fY (y|r)
fY (y|s)

=
fZ(h−1(y)|r)
fZ(h−1(y)|s)

is decreasing in y. Thus the claim is proven.

Then define h(x) = FZ(x|s). h satisfies the assumptions in the claim. Therefore, we can replace Z with Y = Fz(Z|s).

Then by a basic theorem of mathematical statistics, Y |s ∼ Unif(0, 1). The support of Y is [h(xa), h(xb)] = [0, 1].

Proof (Proof of Proposition 5)

We start with the necessity condition. The proof is by contrapositive. Suppose that FZ1 (z
∗|r) < Fz2 (z

∗|r) for some

z∗ ∈ (0, 1). Then we will show that for some feasible parameter values, the payoff of the firm with lowest x from the signal

Z1 is strictly lower.

We will assume that the distribution of x is degenerate, so x is known. Let R > I > 0 be arbitrary and set c =

(R − I)/(2z∗). Next, set x =
(R−I−z∗c)(FZ2

(z∗|r)−z∗)
1−z∗ . Finally set y arbitrarily such that y > x + z∗c. Let D∗ = R −

x/(FZ2
(z∗|r)− z∗). Then it is immediate that (z∗, D∗) satisfies both constraints with equality.

∂

∂z

[
−

1− F (z|s)
F (z|r)− F (z|s)

]
=

f(z|r)[1− F (z|s)]− f(z|s)[1− F (z|r)]
(F (z|r)− F (z|s))2

> 0,

where the inequality is shown in the proof of proposition 1. Then − 1−F (z|s)
F (z|r)−F (z|s) is strictly increasing, so z∗ is the smallest

z such that both constraints bind. Then by proposition 1 (z∗, D∗) is optimal for signal Z2.

By assumption, FZ1 (z
∗|r) < FZ2 (z

∗|r). This implies that R − 1−z∗

FZ1
(z∗|r)−z∗ x < I + z∗c. By Lemma A.2 and the fact

that − 1−z∗

FZ1
(z∗|r)−z∗ is increasing it implies that the optimal contract for Z1, (z′, D′) satisfies z′ > z∗. Then, R− I− z∗c >

R− I − z′c and R− I − z∗c > R− I + x− y, so the payoff from signal Z1 is higher.

Next, we turn to sufficient conditions. Suppose that Z1 satisfies the hypothesis of the proposition with respect to Z2.

Note that due to the normalization, the payoff to the firm from (z,D) is the same for signals Z1 and Z2.

Then since FZ1
(z|r) ≥ FZ2

(z|r), ∀z ∈ [0, 1], any (z,D) feasible given Z2 is feasible given Z1. Then the best separating

contract with signal Z1 has weakly higher payoff than for signal Z2. Similarly, the best pooling contract with signal Z1 has

weakly higher payoff than for signal Z2. By theorem 1, this implies that the payoff of signal Z1 is weakly higher, which

concludes the proof.

Proof (Proof of Proposition 6) Suppose that Zαi satisfy MLRP. Next, we show that informativeness falls with α. I will

use proposition 5. Then it will be sufficient to show that if α1 < α2, Ẑα2 |r FOSDs Ẑα1 |r. I will show that for any q,
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H(α) ≡ FẐα
(q|r) is differentiable and H′(α) ≤ 0.

H(α) =

∫ z(α)

0
fZ(v|r)Fw

(
z(α)− v

α

)
dv,

where ∫ z(α)

0
f(v|s)Fw

(
z(α)− v

α

)
dv = q

Then the assumptions on Z ensure that z(α) is differentiable in α (by the implicit function theorem) and

z′(α) =
1

α2

∫ z(α)
0 fZ(v|s)fW

(
z(α)−v

α

)
(z(α)− v)dv∫ z(α)

0 fZ(v|s)fW
(

z(α)−v
α

)
dv

H′(α) = −
1

α2

∫ z(α)

0
fZ(v|r)fW

(
z(α)− v

α

)
(z(α)− v)dv + z′(α)

∫ z(α)

0
fZ(v|r)fW

(
z(α)− v

α

)
dv

Then showing that H′(α) ≤ 0 is equivalent to

∫ z(α)
0 fZ(v|r)fW

(
z(α)−v

α

)
(1− v

z(α)
)dv∫ z(α)

0 fZ(v|s)fW
(

z(α)−v
α

)
(1− v

z(α)
)dv

≥

∫ z(α)
0 fZ(v|r)fW

(
z(α)−v

α

)
dv∫ z(α)

0 fZ(v|s)fW
(

z(α)−v
α

)
dv

which is equivalent to: ∫ z(α)

0

fZ(v|r)
fZ(v|s)

f1(v)dv ≥
∫ z(α)

0

fZ(v|r)
fZ(v|s)

f2(v)dv,

where f1 and f2 are p.d.f.s given by:

f1(v) =
fZ(v|s)fW

(
z(α)−v

α

)
(1− v

z(α)
)∫ z(α)

0 fZ(v|s)fW
(

z(α)−v
α

)
(1− v

z(α)
)dv

and

f2(v) =
fZ(v|s)fW

(
z(α)−v

α

)
∫ z(α)
0 fZ(v|s)fW

(
z(α)−v

α

)
dv

Since the function
fZ(v|r)
fZ(v|s) is decreasing, it is sufficient to show that f2 FOSDs f1. This is implied by the fact that f2(v)/f1(v)

is increasing.

Proof (Proof of Proposition 7)

fZα (z|a) = αfZ(z|s) + (1− α)fZ(z|a)

fZα (z|r)
fZα (z|s)

= α+ (1− α)
fZ(z|r)
fZ(z|s)

,

which is decreasing.

We follow the proof in proposition 6 and define H(α) ≡ FẐα
(q|r). We show that H is differentiable and H′(α) ≤ 0 for

all q, which is sufficient to show that informativeness fall with α.

H(α) = αF (z(α)|s) + (1− α)F (z(α)|r)

where

F (z(α)|s) = q

Then clearly, z′(α) = 0. So H′(α) = F (z(α)|s)− F (z(α)|r) ≤ 0.

Proof (Proof of Proposition 8) Let α1 < α2 be such that there is a feasible contract with a = s for α2. Direct inspection

shows that the contract is still feasible for α1. This implies that the set of α-s such that a feasible contract exists is [0, α̃]
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for some α̃. Next, we show that α̃. Using the properties of MLRP, we see that

d

dz

[
R− x

1− F (z, α|s)
H(z, α)

]
> 0.

Then for all z,

R− x
1− F (z, α|s)

H(z, α)
< lim

z→zb

[
R− x

1− F (z, α|s)
H(z, α)

]
= R−

x

1− f(1, α|r)
,

where we used L’Hospital’s rule in the last step. Since limα→1 f(1, α|r) = 1,

lim
α→1

max
z

{
R− x

1− F (z, α|s)
H(z, α)

}
= −∞,

which implies that for all α sufficiently large, there is no feasible contract.

Next we show that z(α) is strictly increasing. Let 0 ≤ α1 < α2 ≤ α̃.

R− x
1− z(α2)

H(z(α2), α2)
> R− x

1− z(α2)

H(z(α2), α2)
= I + z(α2)c,

where the equality follows from Lemma A.2. Then Lemma A.2 implies that z(α1) < z(α2).

The payoff to the firm from the contract with covenant is R − I − z(α)c and it is strictly decreasing and u.h.s. in z.

Then the set B = {α ∈ [0, α̃] : R− I − z(α)c ≥ R− I − y + x} is compact, nonempty (since 0 ∈ B) and an interval (since

z(α) is increasing). Then a contract with covenants will be weakly (strictly on the interior) preferred on [0,maxB].

Proof (Proof of Proposition 9) We know that (6) is binding, so

R−D =
R− I − y

1− F (z, α|r)
.

Then the optimal z is the smallest that satisfies the break even constraint (5), which can be expressed as:

R− (1− z)
R− I − y

1− F (z, α|r)
≥ I + zc.

Then showing that z(α) is increasing is identical to the proof in proposition 8.

A.1 Proofs of results in Section 5

We need introduce some additional results and notation, necessary for the proofs of Section 5.

Since
∫W
W g(W )h(W |s) = 1, there exist W1 < W ∗ < W2 such that g(W ) < 1 for W ∈ (W1,W2) and g(W ) > 1 on

[W,W1) and (W2,W ]. Thus the risky action shifts the probability towards the extremes.

Let t(W ) = H(W |r)−H(W |s). Since t(W ) = t(W ) = 0 and t is strictly increasing on [W,W1) and (W2,W ] and strictly

decreasing on (W1,W2), there exists some unique Ŵ ∈ (W1,W2) such that t(Ŵ ) = 0. This implies that H(W |r) > H(W |s)

on (W, Ŵ ) and H(W |r) < H(W |s) if W ∈ (Ŵ ,W ).

Next, we need to consider the bank’s payoff. Taking derivatives,

d

dD
πb(D, a) = −γbh(D|a) + (1− h(D|a)) = (1−H(D|a))

[
1− γb

h(D|a)
1−H(D|a)

]
.

h(D|a)/(1−H(D|a)) is the hazard rate of R, which by assumption is increasing everywhere. Then the bank’s profit is

maximized at some level D∗(a) < R, where a refers to the action that the firm took. Also, by definition D̂(a) ≤ D∗(a).

Proof (Proof of Lemma 5) Let p(D) =
∫W
D (W − D)(h(W |r) − h(W |s))dW. From the definition it follows that ∆π(D) =

p(D)− (H(D|r)−H(D|s))γf . It is clear that p(D) is continuous, p(W ) = p(W ) = 0.
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First, we prove p(D) > 0 for all W ∈ (W,W ). p′(D) = −
∫W
D h(W |r) − h(W |s)dW and p′′(D) = h(W |r) − h(W |s).

This implies that p′ is increasing on [W,W1), decreasing on (W1,W2) and increasing again on (W2,W ]. The fact that

p′(W ) = p′(W ) = 0 implies that p′(D) > 0 on (W,W1] and p′(D) < 0 on (W2,W ]. Since p′ is strictly decreasing on

(W1,W2), there exist some Wc such that p′(D) > 0 on (W,Wc) and p′(D) < 0 on (Wc,W ). Then if D ∈ (W,Wc),

p(D) > p(W ) = 0; if W ∈ [Rc,W ), then p(D) > p(W ) = 0. Therefore p(D) > 0 for all D ∈ (W,W ) and p(W ) = p(W ) = 0.

Then for all D ∈ [Ŵ ,W ), ∆π(D) = −(H(W |r) − H(W |s))γf + p(D) ≥ p(D) > 0, where the inequality follows from

the fact that H(W |r) ≤ H(W |s) if W ≥ Ŵ . Since ∆π(D) is continuous, for some ϵ > 0, ∆π(D) > 0 for all D > D̂ − ϵ.

This establishes the existence of the cutoff D2.

Next, we prove the existence of D1. ∆π′(D) = −(h(D|r) − h(D|s))γf + p′(D). Taking limits limD→W ∆π′(D) =

−(h(W |s)− h(W |r))γf < 0. This and the fact that ∆π(W ) = 0 establishes the existence of D1.

Before proving proposition 10 we need a technical lemma.

Lemma A.6 Suppose that D̂(s) < Ŵ . Then D̂(s) < D̂(r).

Proof (Proof of Lemma A.6) In the proof of lemma 5 we showed that EP (D, s) > EP (D, r) for all D ∈ (W,W ). Then for

all D ∈ (W, D̂(s)], we have:

πb(D, r) = EP (D, r)− γbM(D|r) < EP (D, s)− γbH(D|s) = πb(D, s) ≤ πb(D̂(s), s) = I.

The first inequality uses the assumption that D̂(s) < Ŵ , so for all D < D̂(s), H(D|r) > H(D|s). The second inequality

follows from the fact that πb(D, s) is increasing from W to D∗(a) and that D̂(a) ≤ D∗(a). Then the statement follows

from the definition of D̂(r).

Proof (Proof of Proposition 10) Consider the first case.

Let A be the set of face values of the debt such that for all values D ∈ A, the incentive and bank-even constraint hold.

Since D̂(s) ≤ Dr, D̂(s) ∈ A. If D < D̂(s), then the bank’s break-even constraint is not satisfied. Then D̂(s) = minA. Since

πf (D, a) is strictly decreasing in D, D̂(s) is the best debt value that induces action a = s.

Next, we show that this contract is preferred to any contract that induces a = r. Let B be the set of debt values D

that induce action a = r and satisfy the bank’s break-even constraint. By definition, D ∈ B implies that D ≥ D̂(r). Since

Dr ≤ R̂, Lemma A.6 implies that D̂(r) > D̂(s). Then for all D ∈ B, we have

πf (D, r) ≤ πf (D̂(r), r) = ER− EP (D̂, r)−H(D̂(r), r)γf

= ER− I −H(D̂(r), r)(γf + γb)

< ER− I −H(D̂(s), r)(γf + γb)

< ER− I −H(D̂(s), s)(γf + γb) = πf (D̂(s), s),

which concludes the proof for the first case.

On the other hand, consider the case when D̂(r) > Dr. Then no contract can induce action a = s and break-even for

the bank. Then all contracts must induce a = r and break-even for the bank, conditional on action a = r. Since the firm’s

payoff is strictly decreasing in D, the optimal contract that induces a = r and break-even is D̂(r).

Lemma A.7 Define ξ(x, a) = H(EP−1(x, a)|a). Then the function ξ(x, a) is convex on (−∞, EW ) and strictly convex

on (W,EW ) a.

Proof (Proof of Lemma A.7) We prove the second statement first.

d

dx
ξ(x, a) =

h(EP−1(x, a)|a)
1−H(EP−1(x, a)|a)

,

where we used the definition of ξ and EP . The fact that EP−1 is increasing and the fact that the hazard rate is strictly

increasing implies the result. For every x < R, d
dx

ξ(x, a) = 0. Finally, the fact that d
dx

ξ(x, a) > 0 for x > R, establishes the

global convexity.
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Lemma A.8 Let A > X > 0. Then the function ζ(z,A,X, a) ≡ zξ(A, a)+(1−z)ξ[(X−zA)/(1−z), a] is strictly increasing

in z ∈ [0, 1)

Proof ζ(z,A,X, a) is differentiable in z everywhere, except at z = (X −W )/(A−W ). At the points of differentiability,

d

dz
ζ(z,A,X, a) = ξ(A, a)− ξ

(
X − zA

1− z
, a

)
−

A−X

1− z
ξ

(
X − zA

1− z
, a

)
> (A− (I − zA)/(1− z))ξ′

(
X − zA

1− z
, a

)
−

A− I

1− z
ξ′

(
X − zA

1− z
, a

)
= 0,

where we used the convexity of ξ established in Lemma A.7.

The function ξ() denotes the probability of default as a function of the expected payment to the bank. We show that

this probability is a convex function of the expected payment. The function ζ is similar, but here the expected payment is

A with probability z and B with probability 1− z, where zA+ (1− z)B = X.

Proof (Proof of Lemma 6) First, we find the optimal contract when the action is observable: the action a can be specified

in the contract. First we show that conditional on choosing any a, it is optimal to set the contract (∅, D̂(a)).

Clearly, we can assume without loss of generality that the break-even constraint 17 is binding. Then for any covenant

tightness z, the corresponding value of the debt D(z) satisfies

F (z|s)πb(D
∗(a), a) + (1− F (z|s))πb(D(z), s) = I.

Then the probability of bankruptcy is given by ζ(F (z|s), πb(D
∗(a), a), a). Lemma A.8 shows that this probability is mini-

mized by setting z = za, or equivalently, to a contract with no covenants.

Then consider an alternative contract without a covenant and value D′ defined by πb(D
′, a) = I. The new contract

reduces the probability of bankruptcy (strictly if z > za), while it keeps the break-even constraint for the bank. This

increases the payoff of the firm and the bank.

Next, we need to find out what action is optimal to induce. From the definition and the fact that the bank’s break-even

constraint is binding,

πf (D̂(a), a) = ER− I −H(D̂(a)|a)(γf + γb).

Since D̂(s) < Dr, by lemma A.6, D̂(s) < D̂(r). Then H(D̂(r)|r) > H(D̂(s)|r). Since D̂(s) < Dr, it follows that

H(D̂(s)|r) > H(D̂(s)|s) , which implies that πf (D̂(s), s) > πf (D̂(r), r).

The contract (∅, D̂(s)) induces the action a = s since D̂(s) < Dr. Since this contract maximizes the firm’s payoff in

the relaxed problem, it is optimal in the fully constrained problem.

Proof (Proof of Lemma 7) Recall that D̂(r) is defined implicitly by πb(D̂a, r) = I. By assumption D̂(r) ≤ W ∗.

1. Constraint (17) binds.

Let (z∗, D∗) be an optimal contract that satisfies (17) and (16) and the inequality in constraint (17) is strict. Incentive

compatibility (16) implies that z∗ ∈ (0, 1). If D ≥ D̂(r), then the payoff from this contract is:

F (z∗|s)πf (D
∗(s), s) + (1− F (z∗|s))πf (D, s) < πf (D̂(r), s) < πf (D̂(r), b),

which is a contradiction since (∅, D̂(r)) is a feasible contract. Therefore, D∗ < D.

Since F (z∗|s)πb(D
∗(s), s) + (1 − F (z∗|s))πb(D, s) is continuous, increasing and unbounded from below in D, there

exists D′ such that (17) binds with equality. Since D′ < D < D̂(r) ≤ W ∗, ∆π(D′) < ∆π(D), so the constraint (16) is

still satisfied. The firm strictly prefers the new contract.

2. Optimal contract exists.

If there is no contract that induces a = s and dominates (∅, D̂(r)), then (∅, D̂(r)) is the optimal contract,

Suppose that there exists a contract (z1, D1) that dominates (∅, D̂(r)). By part (i) we can assume that (17) holds

with equality. Let (z′, D′) be any contract such that z′ > z1 and it satisfies (17) with equality. By lemma A.8, the
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probability of bankruptcy Prob(Default) is higher. Since the firm’s payoff is EW − I − Prob(Default)γb, the firm’s

payoff is strictly lower. So without loss of generality, we can impose the constraint z ∈ [0, z1].

The incentive compatibility constraint (16) cannot be satisfies by D > D∗(s), so again without loss of generality we

can impose constraint D ≤ D∗(s). Next, (17) implies

πb(D, s) =
1− F (z|s)πb(D

∗(s), s)

1− F (z|s)

Define D ≡ min z ∈ [0, z1]
1−F (z|s)πb(D

∗(s),s)
1−F (z|s) . Then using the fact that D ≥ πb(D, s), we obtain the constraint that

D ∈ [D,D∗(s)].

So we showed that we can impose the additional constraints, D ∈ [D,D∗(s)], z ∈ [0, z1]. Since the constraints (16)

and (17) are continuous in z,D, the constraint is closed and bounded, hence compact. Then since the firm’s payoff is

continuous, an optimal contract exists.

3. If constraint (16) doesn’t bind, then the contract is not optimal.

Let (z∗, D∗) be a contract that satisfies (17) and (16) and the inequality in constraint (16) is strict. We will show that

there exists an alternative contract (z′, D′) that gives strictly higher payoff for the firm and satisfies the constraints

(16) and (17). Then the existence of optimal contract implies the result.

Let X = F (z∗|s)EP (D∗(s), s) + (1− F (z∗|s))EP (D∗, s). Define D(z) implicitly by

F (z|s)EP (D∗(s), s) + (1− F (z|s))EP (D(z), s) = X.

D(z) is uniquely defined for all z ≤ z∗. We next show that (z∗ − ϵ,D(z∗ − ϵ) keeps the firm’s payoff the same and

satisfies all the constraints for ϵ > 0 sufficiently small.

Continuity implies that (16) will be satisfied for all (z∗ − ϵ,D(z∗ − ϵ) if ϵ > 0 is sufficiently small.

Direct inspection reveals that F (z|s)H(D∗(s)|s) + (1−F (z|s))H(D(z)|s) = ζ(F (z|s), EP (D∗(s), s), X, a). Lemma A.8

shows that F (z|s)H(D∗(s)|s) + (1− F (z|s))H(D(z)|s) is strictly increasing in z. Then by construction

F (z|s)πb(D
∗(s), s) + (1− F (z|s))πb(D(z), s) = X − [F (z|s)H(D∗(s)|s) + (1− F (z|s))H(D(z)|s)]γf ,

which implies that (17) is satisfied for (z,D(z) with strict inequality if z < z∗. The firm’s payoff is

F (z|s)πf (D
∗(s), s) + (1− F (z|s))πf (D(z), s) = EW −X,

so it is not changed.

Lastly let z < z∗ be such that (z,D(z)) satisfies both constraints with strict inequality. Then for η > 0, (z,D(z)− η)

still satisfies all the constraints and is strictly preferred by the firm.

4. The constraint (16) is binding at the optimum.

This follows from point 2 (optimal contract exists) and (3) if (16) is slack, the contract is not optimal.

Proof (Proof of Proposition 11) We prove the three statements in turn.

1. Suppose that 0 < I1 < I2 are two possible face values of the debt; let (z̃1, D1) and (z̃2, D2) be the corresponding

optimal contracts. Since the optimal contract minimizes z̃ subject to the incentive and promise-keeping constraints, for

all (z̃, D) such that z̃ ≤ z̃1 and (16) holds we have:

F (z̃1|s)πb(D
∗(s)|s) + (1− F (z̃|s))πf (D|s) ≤ I1 < I2.

Therefore in the case of I2, there is no feasible contract with covenant trigger z ≤ z̃1 that satisfies (17) and (16). This

implies that z̃2 > z̃1.

2. Let γb1 < γb2. Let (zi, Di) be the respective optimal contracts. Recall that D∗
i (s) is the corresponding value that

maximizes πf (D, s; γbi). It is immediate that D∗
1(s) > D∗

2(s). Then it is immediate that (16) is slack for (z2, D2) if

γb = γb1. Since πf is strictly decreasing in γb and πb(D
∗
2s), s|γb2) < πb(D

∗
1s), s|γb1), it follows that (14) is also slack

for (z2, D2) if γb = γb1. Then as in lemma 7 we can show that the optimal contract has z < z2.
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3. Let D(z) be defined as the value of the debt such that the incentive constraint (16) binds. Mean-preserving spread of

W |r reduces D(z). Then at {(z,D2(z)) : z ≤ z1} the break-even constraint does not hold. Then by the same argument

as in (1), z2 > z1.

A.2 Proofs of results in Section 6

Proof (Proof of Proposition 12) First, we make a technical point.

Claim
F (z|r)−F (z|s)

F (z|s) is strictly decreasing in z.

Proof of claim Taking logs and differentiating we see that the claim is implied by
f(z|r)
F (z|r) <

f(z|s)
F (z|s) for z < zb. Proving

this inequality is done in the same way as for lemma A.3. This proves the claim.

Suppose that the optimal contract for some m2 > 0 is with a covenant: (z̃2, D2). Consider m1 ∈ (0,m2). Define z̃1 by

(1−m1)F (z̃1|s) = (1−m2)F (z̃2|s). We have that z̃1 ∈ (za, z̃2) and is unique. Then

(1−m1)[F (z̃1|r)− F (z̃1|s)] =
(1−m2)F (z̃2|s)
(1−m1)F (z1|s)

[(1−m1)F (z̃1|r)− F (z̃1|s)]

= (1−m2)F (z̃2|s)
F (z̃1|r)− F (z̃1|s)

F (z̃1|s

> (1−m2)F (z̃2|s)
F (z̃2|r)− F (z̃2|s)

F (z̃1|s
= (1−m2)[F (z̃2|r)− F (z̃2|s), ]

where the strict inequality follows from the claim. Then the contract (z̃1, D2) satisfies the constraints for m1, gives the

same payoff as the contract for m2, and the incentive constraint is slack. By the same arguments as in lemma A.2, we show

that there exist (z̃′1, D1) that gives strictly higher payoff and z̃′1 < z̃1. This fact and the proposition hypothesis that the

optimal contract has a covenant for some m > 0 proves all the claims of the proposition except that m̄ < 1.

Finally to show that m̄ < 1, it is sufficient to show that for all m large enough the constraints cannot be satisfied. As

in lemma A.2, we can show that the incentive and break-even constraint imply:

R−
1− (1−m)F (z̃|s)

(1−m)(F (z̃|r)− F (z̃|s))
x ≥ I + F (z̃|s)c. (A.24)

If (z̃, D) satisfy the constraints, then (A.24) is satisfied. We have

1− (1−m)F (z̃|s)
(1−m)(F (z̃|r)− F (z̃|s))

≥
m

1−m

1

(F (z̃|r)− F (z̃|s))
≥

m

1−m

1

A
,

where A = maxz F (z̃|r)− F (z̃|s) and A > 0. Then

max
z̃

{
R−

1− (1−m)F (z̃|s)
(1−m)(F (z̃|r)− F (z̃|s))

x

}
≤ R−

m

1−m

1

A
x.

But the last term converges to −∞ as m → 1, which proves that the condition (A.24) cannot be satisfied for large enough

m.
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B Alternative Renegotiation Assumption

In this appendix, we will explore an alternative specification for the renegotiation process. In the main body of the paper,

we assume that after signing a contract with the bank, the firm cannot borrow from other banks, or refinance the due loan

with other lenders. As a result, the bank obtains monopoly power in the event of a covenant violation. Here we relax this

assumption. We show that the main results of the paper remain unchanged.

We assume that in case of a covenant violation, the original lender has the right to demand repayment of the face value

of the loan. The firm can contract with another lender, as long as it repays the original loan D and the renegotiation cost

c19: in other words the loan can be refinanced. There is a mass of outsider banks which are perfectly competitive. Since the

cost to the lender y of action r is determined by the reduced probability of being repaid, then the cost of risk shifting is

borne by the ultimate holder of the loan (that is the bank that refinanced the loan if it was refinanced.) Finally, we assume

that the firm type x is known.

When the principal cannot commit, the optimal equilibrium involves mixed strategies (see, for example,Bester and

Strausz (2001)). Similarly, we will consider the more general case of mixed strategies: the firm chooses the probability p of

action a = r.

Since the firm may have risk-shifted, the outside bank, even if competitive, demands repayment larger than D + c.

They offer the following payment to the firms:

Dr = D + c+ Prob(a = r|z)y.

D+ c is the amount paid to the current lender and Prob(a = r|z)y is the expected value of the loss of the bank from risk-

taking. Since the renegotiation occurs after the signal z has been observed: (1) the signal z is informative of the probability

that risk-taking had occurred and (2) it will be used to price the new payment.

Prob(a = r|z) is given by Bayes theorem:

Prob(a = r|z) =
p̄f(z|r)

(1− p̄)f(z|s) + p̄f(z|r)
,

where p̄ is the (ex ante) belief that the firm risk-shifted. In equilibrium the outside bank’s ex ante beliefs are correct, so

p = p̄.

Then the outside banks offer to swap existing debt with violated covenants for straight debt with no covenants20 and

the following face value:

Dr(z) = D + c+
p̄f(z|r)

(1− p̄)f(z|s) + p̄f(z|r)
y.

The existing debt holder is constrained by the outside banks when it renegotiates. So D(z) ≤ Dr(z). We also know that

D(z) ≤ R, since the bank cannot demand more than what the firm will eventually get. Then D(z) ≤ min{Dr(z), R}. We

will assume that Dr(z) ≤ R always. Since the bank cannot commit to renegotiation behavior at the start, it will extract

as much as possible, so D(z) = Dr(z).

Then the firm’s payoff for a given contract (D, z̃) and bank belief p̄ is given by:

π(p) = R−D + px− p

∫ z̃

0
(Dr(z)−D)f(z|r)dz − (1− p)

∫ z̃

0
(Dr(z)−D)f(z|s)dz.

If p = p̄ = 1, the loan with covenants is dominated by the loan (I + y, ∅). On the other extreme, suppose that p̄ = 0.

In this case, the outside firms always offer Dr = D + c. Then the firm’s payoff is given by:

π(p) = R−D + p(x− (F (z̃|r)− F (z̃|s))c)− F (z̃|r)c.

Since x > c, and F (z̃|r)−F (z̃|s) < 1 the firm has an incentive to set p = 1, that is risk-shift. But then this is a contradiction!

So, if the outside banks believe that the firm does not risk-shift, then they will not pay attention to the signal z and will

19 This assumption simplifies the mathematics but has no bearing on the results.
20 In our model there is a single decision to risk-shift, so there is no need for covenants on the new debt. In actuality, the
new lenders may be concerned with future risk-shifting, so they may demand covenants on the new debt.
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offer low rates to switch; as a result the firm’s payment does not depend on its action, so it will always risk-shift. Since the

outside banks are rational, they do not entertain this belief in the first place.

So, in equilibrium p ∈ (0, 1). A player will randomize between different actions only if they give him the same payoff.

So, π(0) = π(p) = π(1). This implies that π′(p) = 0. It is straightforward to show that this is equivalent to:

x =

∫ z̃

0

[
c+

p̄f(z|r)
(1− p̄)f(z|s) + p̄f(z|r)

y

]
(f(z|r)− f(z|s))dz. (B.1)

This equation implicitly pins down p (and p̄) as a function of z̃. The maximum of the expression on the right (over z̃

and p̄) is (c+y)(F (z∗|r)−F (z∗|s)), where z∗ is defined by f(z∗|r) = f(z∗|s). Then a necessary condition for an equilibrium

with covenants is that

x < (c+ y)(F (z∗|r)− F (z∗|s)).

As long as the condition above is satisfied, there are some bounds z, z̄ such that 0 < z < z∗ < z̄ ≤ 1, such that equation

(B.1) has a unique solution p(z̃) that is decreasing on [z, z∗] and increasing on [z∗, z̄] and p(z̃) ∈ [0, 1].

Lemma B.1 There exists some z, z̄, z < z∗ < z̄ ≤ 1, such that equation (B.1) has a unique solution p(z̃) ∈ [0, 1] and

p(z̃) is continuous, decreasing on [z, z∗] and increasing on (z∗, z̄].

Proof Let the right-hand side of equation (B.1) be denoted h(p̄, z̃).

h′
p(p̄, z̃) =

∫ z̃

0

[
f(z|r)f(z|s)

[(1− p̄)f(z|s) + p̄f(z|r)]2
y

]
(f(z|r)− f(z|s))dz.

It is straightforward to show that h′
p(p̄, z̃) is minimized at p̄ = 1, so

h′
p(p̄, z̃) ≥

∫ z̃

0

[
f(z|s)
f(z|r)

y

]
(f(z|r)− f(z|s))dz, ∀p̄ ∈ [0, 1], z̃ ∈ [0, 1].

The expression on the right is positive and strictly increasing on (0, z∗) and strictly decreasing on (z∗, 1]. Let

z̄ = sup

{
z ∈ [0, 1] :

∫ z̃

0

[
f(z|s)
f(z|r)

y

]
(f(z|r)− f(z|s))dz ≥ 0

}
.

It is obvious that z̄ > z∗.

Set z by

z = inf

{
z ∈ [0, 1] :

∫ z̃

0

[
c+

f(z|r)
f(z|r)

y

]
(f(z|r)− f(z|s))dz − x ≥ 0

}
Clearly, 0 < z and the assumption we made implies that z < z∗. Equation (B.1) has a unique solution p̄ = 1 at z.

Since h′
p(p̄, z̃) > 0 on (0, z̄) and h′

z(p̄, z̃) > 0 for z ∈ (0, z∗) and h′
z(p̄, z̃) < 0 for z ∈ (z∗, z̄), the implicit function

theorem is applicable and all the results follow from it.

Then the bank’s break-even constraint is:

D +

∫ z̃

0
(Dr(z)−D − c)[p(z̃)f(z|r) + (1− p(z̃))f(z|s)]dz ≥ I + p(z̃)y. (B.2)

The equilibrium contract maximizes the firm’s payoff subject to break-even and incentive constraints. Since D can

be adjusted up or down without affecting the incentive constraints, in equilibrium the break-even constraint holds with

equality. Therefore, the firm’s payoff is given by

OF (z̃) = R− I − [p(z̃)F (z̃|r) + (1− p(z̃))F (z̃|s)]c− p(z̃)(y − x). (B.3)

Since p(z̃), F (z̃|a) are increasing on [z∗, z̄), OF (z∗) > OF (z̃) if z̃ > z∗. So, if covenants are used, z̃ ∈ [z, z∗].

Therefore, the mechanism outlined in the main body of the paper is still operative even in the presence of refinancing.
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C Estimation of Restatement Frequency

Financial statements are noisy indicators of the firm’s underlying state. A measure of this noise is the likelihood that

financial statements are restated due to errors or irregularities in the accounting numbers. In this appendix, we compute

the frequency of restatements in a comprehensive sample of US public firms.

Data and Analysis We select all US public firms with greater than $10 million in inflation-adjusted total assets (base

year=2000) from the Compustat database. We further require that the included firm-years have a share code of 10 or 11

in the CRSP database to restrict our analysis to a clean sample of ordinary common shares. Specifically, this restriction

excludes certificates, ADRs (American Depository Receipts), SBIs (Shares of Beneficial Interest), units, closed-end funds,

REITs, etc. from our sample. This results in a sample of 90,454 firm years from 2000 to 2018.

We next merge this comprehensive sample of US public firms with the Audit Analytics Advanced Non-Reliance restate-

ment database. In comparison to other restatement databases (for example, from the US General Accounting Office (GAO)

or the Securities Exchange Commission (SEC)), the Audit Analytics (AA) database is not only more comprehensive in

its coverage, but also more useful as it indicates the specific fiscal quarters and years affected by each restatement. More-

over, the AA database excludes technical restatements such as those after a merger, discontinued operation, or changes in

accounting principles that are unrelated to noise or misreporting (Lobo and Zhao (2013)). Our sample begins in 2000 as

Audit Analytics firm identifiers required to merge the Audit Analytics and the Compustat databases are unavailable prior

to 2000.

We mark firm-years in the comprehensive, cleaned Compustat database that were disclosed to have misstated financial

reports using the RES BEGIN DATE and RES END DATE variables provided for each restatement in Audit Analytics.

Table C.2 presents an annual breakdown of restatement frequency amongst US public firms during our sample period.

Our sample contains 10,198 unique firms. Of these, a staggering 39.4% (4,018 firms) restate their financial statements

at least once during our sample period from 2000 to 2018. This analysis illustrates that financial statements on which

covenants are based maybe misstated, and thus less reliable, in a significant proportion of cases.

Year Restated Firms Total Firms Percent Restated
2000 837 6,609 12.7%
2001 1,011 6,020 16.8%
2002 1,128 5,701 19.8%
2003 1,150 5,525 20.8%
2004 1,196 5,431 22.0%
2005 963 5,304 18.2%
2006 804 5,131 15.7%
2007 650 4,934 13.2%
2008 573 4,676 12.3%
2009 608 4,484 13.6%
2010 627 4,295 14.6%
2011 670 4,290 15.6%
2012 698 4,204 16.6%
2013 652 4,176 15.6%
2014 561 4,120 13.6%
2015 501 4,052 12.4%
2016 403 3,919 10.3%
2017 347 3,828 9.1%
2018 325 3,755 8.7%
Total 13,704 90,454 15.2%

Table C.2 Restatement frequency in US public firms by year
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Additional evidence of noise in financial statements. We note that even this relatively high likelihood of restate-

ments understates the true level of noise in financial statements. This is because not all accounting irregularities or errors

are caught and reported, and firms have considerable discretion to manage earnings without violating accounting rules

that would necessitate a restatement (Dechow et al. (2010)). Specifically, Dyck et al. (2021) estimate that two-thirds of

corporate fraud cases go undetected and that on average 42% of large public firms are intentionally violating accounting

rules at any point in the business cycle.

Second, the SEC in 2022 noted that a significant number of companies elected to not fully restate their financial

statements even in the presence of material errors due to lenient interpretation of accounting rules by audit committees

and auditors. Thus, the downtrend seen in the percentage of firms restating each year in the table above is overstated.

Moreover, as the SEC tightens enforcement, one is likely to see an increase in the number of restatements going forward.

Third, firms have considerable discretion to manipulate earnings using accrual or real earnings management without

violating accounting regulations (GAAP) (Dechow et al. (2010)).

Finally, Moody’s believes that noise in financial statements is a critical issue for financial market participants as

evidenced by their recent work on financial statement quality ratings (Zhao and Dwyer, 2019). These ratings reflect the

likelihood of mistakes and fraudulent manipulation of accounting numbers and are designed to capture the ‘decision-

usefulness’ of financial statements.

The aforementioned evidence is indicative of the potentially high degree of noise in the underlying contracting variable.

It is important to note that despite the noise, financial covenants continue to be important features of loan contracts. In

Appendix D, we provide an estimate of the frequency of financial maintenance covenants in loan contracts.
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D Estimation of Financial Maintenance Covenant Frequency in Loan Contracts

Corporate loans can be classified into two major types:

– Syndicated loans, in which multiple lenders (e.g., a group of banks or institutional investors) jointly lend to the firm.

These loans are larger and often can be traded in the secondary market. Data on these loans is generally available from

data vendors that track this market (e.g., Thomson Reuters Dealscan, Bloomberg, S&P Loan Pricing Corporation).

– Bilateral loans, in which a single bank lends to the firm. These loans are private contracts that are unlikely to be

traded. As banks intend to keep these loans on their books (i.e., not sell them onwards to other investors or banks),

data on these loans is generally unavailable.

In this Appendix, we first present our empirical findings on the frequency of financial maintenance covenants in

syndicated loan contracts. Next, we discuss the current state of financial covenant use in bilateral (non-syndicated) loans.

Financial covenant use in syndicated loans We estimate the percentage frequency of covenant-lite loans over time

using corporate loan data from Thomson Reuters’ Dealscan database. Our sample consists of U.S. dollar-denominated

syndicated loans made to US-based corporate borrowers. Each observation in our sample corresponds to a loan package,

where a loan package may consist of multiple loan facilities made to the firm. We follow Beyhaghi and Ehsani (2016) and

focus our analysis on term loans. We classify a package as covenant-lite when it includes loans flagged as covenant-lite in

Dealscan. We merge Dealscan data with quarterly Compustat and CRSP using the linking table from Chava and Roberts

(2008).

The figure below shows the fraction of covenant-lite loans among all loans in the sample by year. We note that

there are no covenant-lite loans in the Dealscan database prior to 2004. Covenant-lite loans emerged around 2005, and

briefly disappeared for two years following the global financial crisis (2008-2010). The proportion of covenant-lite loans

has increased after 2010 and has risen to account for 40-50% of all loans towards the end of our sample period. Our data

indicates that financial maintenance covenants are present in about half of the syndicated loans issued in recent years. The

syndicated loan market consists of both leveraged loans with high credit risk and investment-grade loans. We find that

while covenant-lite loans dominate the leveraged loan market, they are almost absent in the investment-grade loan market.

Financial covenant use in non-syndicated loans While most empirical studies focus on large syndicated loans (due

in part to the availability of data), a significant proportion of corporate loans occur in the non-syndicated loan market.

The majority of bank credit consists of bilateral commercial and industrial loans made by banks directly to firms (without

being part of a syndicate). According to the aggregated bank disclosure available from the Federal Reserve, the total size of
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the commercial and industrial loans rose to more than in the $2.7 trillion in 2022.21 In order to get a sense of the frequency

of financial covenant use in this traditional but opaque market, we spoke to senior bankers involved in loan origination

at large, medium sized and small banks. They noted that almost all bilateral loans issued by the banks included financial

maintenance covenants.

Therefore, when we consider the loan market in its aggregate, we find that despite the noise in financial statements on

which they are based, financial maintenance covenants continue to be important features for a broad set of loan contracts.

21 https://www.federalreserve.gov/releases/h8/current/.


